
A Gentler Introduction to Robotics

Matt Strong



Self-Introduction

● Former HIRO Group Researcher
● CRA Outstanding Undergraduate 

Researcher Award: Honorable Mention 
● College of Engineering Research 

Award
● SWE@Microsoft
● Accepted to PhD programs at:

○ Stanford
○ Cornell
○ UPenn
○ UT Austin
○ Morale of the story: join the HIRO 

Group



1. My Research at a High Level (stop me if it gets 
confusing)

2. Which Fundamentals Got Me There

Matt Strong



Introduction: The Problem

● Robotics currently exist at a large 
scale in industrial/manufacturing 
environments

● Humans work around robotics, robots 
don’t work around humans

● But, we need to drive the transition 
from industrial to environments with 
people

Robots working on a car



Introduction: Nearby Space Perception

● In these environments, extended, close 
proximity human robot collaboration is 
essential

● To achieve this, first step: Perception. But 
there’s some problems.
○ External, sparse, high-resolution sensing -- occlusion 

problem
○ Onboard, contact-based sensors

● Solution (and Contribution): Whole Body 
Distributed Sensing is key

A human and robot 
collaborate



Contribution 1

● Problem 1: Current Whole Body Sensing lacks a certain degree of modularity, 
accuracy, and ease of use

● Solution 1: A new plug-and-play robotic skin system for calibration, demonstrated 
on a real avoidance example

A robot avoids a 
human with the 
calibrated skin 
units.



A Plug and Play Robotic Skin
● Goal: Automatically calibrate the skin units along a 

robot’s body

Result of Calibration Actual skin unit poses



A Plug and Play Robotic Skin

https://docs.google.com/file/d/1QCAgth-P2E0NCGqEr2g7ls1Cm-2fX6kI/preview


Contribution 2

● Problem 2: Lack of a smooth transition between avoidance and (desirable) 
contact

● Solution 2: Implicit contact anticipation via those same onboard sensor units

Under our framework, 
a robot can anticipate 
contact with the SUs.



Implicit Contact Anticipation via Distributed Whole-Body Sensing

● Goal:
○ Enable the transition from avoidance to contact 

using whole body, nearby space perception



Framework: The robot slows down before contact and is able 
to make contact, or avoid

https://docs.google.com/file/d/1XFzLkbzQg_L34EKKVxrVgQnP-p_J0L-u/preview


Mapping

● We can also do mapping with all of these 
sensors!

● Safety = you need to know what’s around 
you = you need a precise and accurate 
map of your nearby space



Me

How Did I Get There?



Recommended Study Plan

● Go through 
https://github.com/Introduction-to-Autonomous-Robots/Introduction-to-Autono
mous-Robots

● You can compile it or check out a PDF version under “Releases”

https://github.com/Introduction-to-Autonomous-Robots/Introduction-to-Autonomous-Robots
https://github.com/Introduction-to-Autonomous-Robots/Introduction-to-Autonomous-Robots


Recommended Study Plan

● Go through 
https://github.com/Introduction-to-Autonomous-Robots/Introduction-to-Autono
mous-Robots

● You can compile it or check out a PDF version under “Releases”

https://github.com/Introduction-to-Autonomous-Robots/Introduction-to-Autonomous-Robots
https://github.com/Introduction-to-Autonomous-Robots/Introduction-to-Autonomous-Robots


The Foundations of Robotics: Coordinate Systems



Coordinate Systems Some object in the robot’s 
frame



Coordinate Frames

Objects, robots, etc are associated 
with a coordinate frame



Coordinate Frames

Objects, robots, etc are associated 
with a coordinate frame



Coordinate Frames

● The Kinect will tell us, it sees a 
point at (10, 2, 4) in its own 
frame.

● But we want to know where an 
object is in relation to the robot

● How to do it?

Robot frame

An object, 
sensed by the 
Kinect

Kinect frame



Coordinate Frames

● Recipe:
● Step 1: Figure out how to go 

from the robot base frame to the 
kinect base frame
○ Wait … how to do that?

Robot frame

An object, 
sensed by the 
Kinect

Kinect frame



Two frames: A and B

A

B



Move A up and to the 
right to have the same 
position as B

The same thing as 
adding a 3-d vector to 
A’s position. 



Rotate A to align with B

This requires a 3x3 
matrix, called a rotation 
matrix

Doesn’t change the 
position, but changes 
the orientation



A point in 
frame A

Rotating to 
frame A

How to go 
from frame 
A’s origin to 
frame B’s 
origin

A point in frame B

Transformation matrix from B to 
A



Coordinate Frames

● Recipe:
● Step 1: Figure out how to go 

from the robot base frame to the 
kinect base frame
○ Wait … how to do that?

● To convert the point in the Kinect 
frame to the robot frame, multiply 
it by the kinect to robot 
transformation matrix

● English: Now we know where 
an object is in the world

Robot frame

An object, 
sensed by the 
Kinect

Kinect frame



You can chain transformations together: to go from C to A, you just multiple 
transformations from C to B, and then B to A!



I made use of this in one of the papers I helped write!



From My Research:



Forward Kinematics and Inverse Kinematics

● Forward Kinematics
○ Given where the robot’s joint positions are, where are we with respect to the world 

frame?
○ You can use transformation matrices here! To figure out where the end-effector is in 

the base/world frame, multiply transformations as so:
■ Base frame to joint 1 frame
■ Joint 1 frame to joint 2 frame
■ Joint 3 frame to joint 4 frame
■ …..joint n frame to end-effector frame!

○ You can apply this to any robot





Forward Kinematics and Inverse Kinematics

● Inverse Kinematics
○ Given where we want to go into the world, what 

joint configurations will get us there?
○ Analytical approaches

■ Closed form solution
■ Get very hard with increased complexity

○ Numerical approaches
■ Iterative, optimization based
■ Work for more complex kinematics (ML 

also uses optimization for complex 
problems!)





Degrees of Freedom

The concept of degrees-of-freedom, often abbreviated as DOF, is important for 
defining the possible positions and orientations a robot can reach.

The Franka Panda has 7 joints and 7 degrees of 
freedom = redundancy



The Robotic Pipeline



Sensors

● Get data from real world (or simulated 
observations)

● Lidar: 3-d point cloud
● Proximity sensors: single points
● IMU: acceleration and gyroscope data
● Robots have their own sensors that can 

detect joint positions, velocities, 
accelerations, and more



Perception

● Where are you in the world, and where 
are other things?

● Knowing the robot’s joint information = 
you can compute where the robot is

● Noisy sensor data though….
○ Probabilistic formulations
○ If you have two noisy sensors, if they agree on 

similar points, it’s better than one noisy sensor
○ Under the hood: lots of transformations to get 

everyone on the same page (frame)!

● Prediction: predicting future states



Planning

● We know the environment and where we 
want to go!

● Construct a path!
● MANY ways of achieving this
● Creates a trajectory of achievable points 

for the robot to follow that will get it to a 
desired goal and not crash





Robotic Control

● Joint Space Control:
○ How much to move joints, how fast, how much torque
○ Drones: how much thrust to send to each propellor
○ Wheeled robots: amount of acceleration to apply

● Operational (Task) Space Control
○ I want to move the robot to point (x,y, z)
○ The robot moves in a way that makes sense to a human
○ This approach is “task” oriented
○ We use IK to go from task space to joint space, which the 

robot can understand



ML+Robotics

● Approaches in ML and Robotics simply force the 
robot to learn a variety of behaviors from data!





https://docs.google.com/file/d/1GV2QQE6tMvO-8P3HQAj5yZNE9qoFhwqY/preview


But Here’s What Can Happens 
With a Combination of Both:



https://docs.google.com/file/d/1Ho6H-7Q3BtE9ZDFfRTL465pYcyXHrzmw/preview


Questions?

● Matt Strong
● matthew.h.strong@gmail.com
● Github: peasant98 (I’ll follow you if you follow me)
● If you’re interested in opportunities at Microsoft, send me your resume to 

mattstrong@microsoft.com and I will refer you if you’re a good fit.

mailto:mattstrong@microsoft.com

