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Abstract 

The evaluation of building energy performance requires a baseline for comparison. Common empirical 
baselines are usually used for existing buildings since they are fast and convenient. However, the same type 
of building at the same location will receive the same baseline despite their difference in usage.  
Individualized baselines by creating building energy models are possible solutions, which is labor intensive 
and time-consuming. To fill the gap, this study is to develop individualized empirical baselines for existing 
buildings in a fast way. First, common empirical baselines are created based on survey data. Then, to get 
training samples, building energy models for large-scale existing buildings are created and simulated. 
Finally, based on simulation results, mathematical models to get individualized empirical baselines in a fast 
way are created. U.S. medium office buildings were used as an example to demonstrate the method. We 
developed 30 mathematical models for medium office buildings in two vintages (constructed before 1980 
and after 1980) and 15 climate zones. The mean absolute percentage errors (MAPE) between the 
individualized empirical baselines and the modeled baselines for those 30 mathematical models are all 
lower than 5.5%. An engineer can obtain the individualized empirical baseline for an existing building in a 
few seconds by using the open-source tool we developed. 

Keywords: Building energy rating; Empirical baseline, Existing buildings; Building energy model; 
large-scale simulation.  
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Nomenclature 

𝐶𝐶𝐶𝐶(𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸) Coefficient of variation of the root-mean-square error 

𝐷𝐷 Dataset for all building samples 

𝐷𝐷𝑣𝑣 One subset of dataset 𝐷𝐷 
|𝐷𝐷| Total number of samples in dataset 𝐷𝐷 

|𝐷𝐷𝑣𝑣| Total number of samples in subset 𝐷𝐷𝑣𝑣 

𝑘𝑘 Key model input 𝑘𝑘 that has a significant impact on building energy consumption 

𝐸𝐸𝐸𝐸𝐸𝐸 Individualized empirical baseline site EUI 

𝐸𝐸𝐸𝐸𝐸𝐸 Empirical baseline site EUI 

𝐸𝐸𝐸𝐸𝐸𝐸�  Modeled site EUI from prototypical building energy models 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (𝐷𝐷𝑣𝑣) Gini value 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺_𝐺𝐺𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝑖𝑖(𝐷𝐷, 𝑗𝑗) Gini impurity  

𝐺𝐺 Building 𝐺𝐺 

𝐸𝐸𝐼𝐼𝐼𝐼 Model input  

𝐸𝐸𝐼𝐼𝐼𝐼𝑚𝑚,𝑘𝑘 The value of key model input 𝑘𝑘 for prototypical building energy models 𝐸𝐸 

𝐸𝐸𝐼𝐼𝐼𝐼_𝑖𝑖𝑖𝑖,𝑗𝑗 Ranked value of model input 𝑗𝑗 for building 𝐺𝐺 in all building samples 

𝑗𝑗 Neutral building characteristic 𝑗𝑗  

𝐸𝐸 Prototypical building energy models 𝐸𝐸 

𝑅𝑅𝑀𝑀𝐼𝐼𝐸𝐸 Mean absolute percentage error 

𝑅𝑅𝑀𝑀𝑀𝑀 Modeled baseline site EUI 

𝑅𝑅𝑀𝑀𝑀𝑀_𝑖𝑖𝑖𝑖 Ranked value of modeled baseline site EUI for building 𝐺𝐺 in all building samples 

𝐺𝐺 Number of building samples 

𝐸𝐸𝑡𝑡 The probability that output type 𝑖𝑖 occurs in subset 𝐷𝐷𝑣𝑣 

𝑞𝑞 Label 𝑞𝑞 of building site EUI 

𝑄𝑄 The number of classes in the label of building site EUI 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 Root-mean-square error 

𝑇𝑇 Total number of the output types 

𝐶𝐶 Total number of the subsets 

𝜌𝜌 Spearman's correlation coefficient 

1. Introduction 

The evaluation of building energy performance requires a baseline for comparison. Historically, 
common empirical baselines are usually used for existing buildings. The empirical baseline represents the 
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measured median energy use intensity (EUI) for a group of similar buildings. The measured EUI of a 
candidate building is then compared with the empirical baseline. For example, the median EUI of medium 
office buildings in the hot climate zone is 700 MJ/m2-yr. If a medium office building is in the hot climate 
zone and its measured EUI is 600 MJ/m2-yr, this building can be labeled as an energy-efficient building. 
The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Building 
Energy Quotient In Operation rating [1], the United States (U.S.) Environmental Protection Agency 
ENERGY STAR program [2], and ASHRAE Standard 100 [3] adopt empirical baselines. They create 
empirical baselines based on the median EUI of comparable buildings based on the U.S. Commercial 
Building Energy Consumption Survey (CBECS). However, the same type of buildings at the same location 
has the same empirical baseline despite their difference in usage. For examples, buildings with different 
total floor areas have the same empirical baseline. 

Developing individualized modeled baselines for existing buildings is a possible solution. However, it 
requires creating building energy models for existing buildings, which is labor intensive and time-
consuming. Because the creation of building energy models highly relies on detailed building physical 
feature information. A typical building energy model requires more than 1,000 model inputs, such as 
construction material property of each part of buildings, detailed information for HVAC systems, and 
occupancy schedules. 

One existing approach to address this problem is adding adjustments to the empirical baseline to 
account for some neutral building characteristics, such as operating hours, plug loads, and other factors that 
are meant to be neutral in the comparison of energy performance. For example, a building with higher 
operating hours has a higher empirical baseline. The existing adjustments were made based on measured 
data of existing building samples. However, this can only investigate limited neutral building characteristics 
because the existing large-scale building energy survey data (e.g., CBECS) has limited information on 
building samples. For example, the number of people in the building and the space temperature is difficult 
to collect for extensive building samples. As a result, many existing buildings still have a common empirical 
baseline. 

To further develop individualized empirical baselines in an efficient way, this paper developed 
mathematical models for existing buildings based on a large-scale building energy simulation result. The 
rest of this paper is organized as follows: Section 2 introduces the methodology including the calculation 
of empirical baselines, the generation of training samples, key neutral building characteristics, and the 
method to develop individualized empirical baselines in a fast way. Section 3 shows the case study on U.S. 
medium office buildings. Section 4 discusses the application of this research. Finally, Section 5 concludes 
the findings of this research. 
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2. Methodology 

This research developed a method to obtain individualized empirical baselines for existing buildings in 
a fast way, as shown in Fig.1. First, empirical baselines are calculated based on survey data. Then, training 
samples are generated by creating and simulating a large sample of building energy models. Next, we need 
to identify key building characteristics that are meant to be neutral when evaluating energy performance. 
Finally, individualized empirical baselines are developed using the key neutral building characteristics as 
input variables. The individualized empirical baseline for a candidate building can be obtained in a few 
seconds. Following four subsections will introduce these four steps in detail. 

 
Fig.1. Methodology for reconciling empirical and modeled baselines. 

2.1. Calculation of common empirical baseline 
To identify empirical baselines EUIs in various climate zones, ASHRAE standard 100 [4] provided 

climate zonal EUI ratios. These ratios were used to derive climate zonal EUIs for each building type by 
multiplying them with the CBECS’s national median EUIs. This method produces representative total EUIs 
by building type and climate zone. We adopted this method to calculate empirical baseline EUIs for 15 
climate zones in two vintages (pre-1980 and post-1980). Vintage pre-1980 means that the building was 
constructed before 1980 and vintage post-1980 means that the building was constructed in or after 1980. 
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2.2. Generation of training samples 
To get a large-scale training sample, prototypical building energy models that can represent empirical 

data first need to be created. Then, subsection 2.2.2 introduces the generation of individualized modeled 
baselines for a large sample of buildings using the prototypical building energy models as a starting point. 

2.2.1. Prototypical building energy models 
Fig. 2. shows the process of creating prototypical building energy models that can represent empirical 

data. First, we need to identify the ranges of key model inputs and relations of key model input values in 
different climate zones. For example, the insulation of the building should be more in colder climate zones. 
The relation types of key model inputs are summarized in Table 1. Then, the values of various key model 
inputs are defined through the model calibration. The calibration’s goal is to minimize the difference 
between modeled energy consumption and empirical baselines. More detailed information about the 
creation of prototypical building energy models can be found in our previous research [5].  

 
Fig. 2. Workflow of creating prototypical building energy models based on empirical data. 

Table 1. Relation of model inputs in a set of building models 

Relation 
Index 

Model Inputs Relation Description Model Input 
Example Climate Vintages 

Type 1 Values in all climate zones are same Values for post-1980 and pre-
1980 models are same 

Weekly operation 
hours 

Type 2 Values in all climate zones are same Values for post-1980 models are 
not higher than pre-1980 models 

Electric equipment 
power density 

Type 3 Values in all climate zones are same Values for post-1980 models are 
not lower than pre-1980 models Rated cooling COP 

Type 4 Values in climate zones 5~8 are not 
higher than the other climate zones. No constraint Window U-factor 

Type 5 Values in climate zones 5~8 are not 
lower than the other climate zones No constraint Exterior wall 

insulation R-value 
 

Prototypical building energy models are evaluated using the coefficient of variation of the root-mean-
square error (CV(RMSE)). According to ASHRAE Guideline 14, when the CV(RMSE) is lower than 0.15, 
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the modeled energy consumption is consistent with the empirical data [6]. To calculate the CV(RMSE), we 
must calculate the root-mean-square error (RMSE) first, as shown in the following equation: 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 = �∑ �𝐸𝐸𝐸𝐸𝐸𝐸� 𝑚𝑚 − 𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚�
230

𝑚𝑚=1
30

 , (1) 

where 𝐸𝐸 is the prototypical building energy model, which has 30 models in total (15 climate zones×2 

vintages); 𝐸𝐸𝐸𝐸𝐸𝐸 is the empirical baseline site EUI; 𝐸𝐸𝐸𝐸𝐸𝐸�  is the modeled site EUI of the prototypical building 
energy model. 

Based on the results of RMSE, we can calculate the CV(RMSE) by using the following equation: 

𝐶𝐶𝐶𝐶(𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸) =
𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸

𝑎𝑎𝑎𝑎𝑎𝑎(𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚) , (2) 

where 𝑎𝑎𝑎𝑎𝑎𝑎(𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚) is the average value of the empirical baseline site EUI in 15 climate zones and two 
vintages, which can be calculated using the following equation: 

𝑎𝑎𝑎𝑎𝑎𝑎(𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚) =
∑ 𝐸𝐸𝐸𝐸𝐸𝐸𝑚𝑚30
𝑚𝑚=1

30
 , (3) 

2.2.2. Training samples 
Building model inputs can be classified as neutral inputs and non-neutral inputs (or building assets). 

Neutral inputs are inputs that do not affect the energy efficiency rating. For example, climate and occupied 
hours should not affect the building performance evaluation. Non-neutral inputs are inputs with a direct 
impact on energy consumption and affect the energy efficiency rating, such as exterior wall insulation and 
HVAC system efficiency. 

To make the evaluation of building energy performance focus on the building’s assets, when creating 
the baseline model for a candidate building, neutral model inputs should be the same as the candidate 
building while non-neutral model inputs should be generalized values. In this research, the generalized 
values of non-neutral model inputs are the values of the prototypical building energy models created in 
subsection 2.2.1. The neutral model inputs and their value range for candidate buildings will be introduced 
in subsection 2.3.1. Following introduces the steps to generate modeled baselines. 

First, neutral model input combinations are sampled using the Latin Hypercube Sampling (LHS) [7], 
which is usually used in the sampling of building energy model inputs [8–10]. LHS is a statistical method 
for generating a near-random sample of parameter values from a multidimensional distribution. It is difficult 
to reveal the distributions of the neutral model inputs because most neutral inputs are not included in 
existing survey data. We assume that the distributions of the neutral model inputs are all near-random and 
LHS is adopted for sampling. 



7 
 

Then, large-scale baseline models are generated by modifying the neutral model inputs of prototypical 
building energy models. Python coding and building component library [11] are adopted to automize this 
process. To reduce the simulation time, this research adopts parallel simulation, and the RMACC Summit 
Supercomputer [12] at the University of Colorado Boulder is used for parallel simulation. 

Finally, the simulation results are post-processed to extract useful information. The values of neutral 
model inputs and the simulation results of energy use intensity for all candidate buildings are saved in a 
single CSV file. 

2.3. Key neutral building characteristics 
Building characteristics that should be neutral for building energy rating are first introduced in 

subsection 2.3.1. Then, subsection 2.3.2 introduces the method of identifying key neutral building 
characteristics. 

2.3.1. Neutral building characteristics 
Neutral building characteristics are those that do not affect the energy rating of a building. Physical 

characteristics that are dictated by the building’s architectural design and functions are generally neutral. 
For example, the total floor area is designed by the building’s functions. Building operation characteristics, 
such as the number of occupants in the building and operation hours, should also be considered as neutral 
building characteristics. This research will propose neutral building characteristics based on a literature 
review and engineering judgment. 

2.3.2. Identification of key neutral building characteristics 
Key neutral building characteristics are identified by conducting the correlation test between the 

proposed neutral building characteristics and site EUIs of buildings. Spearman's correlation coefficient (𝜌𝜌) 
is adopted for the correlation test. It is a nonparametric measure of rank correlation. It assesses how well 
the relationship between two variables can be described using a monotonic function. The calculation of  𝜌𝜌 
is expressed as follows: 

𝜌𝜌𝑗𝑗 =
𝐺𝐺 × ∑ 𝐸𝐸𝐼𝐼𝐼𝐼_𝑖𝑖𝑖𝑖,𝑗𝑗 × 𝑅𝑅𝑀𝑀𝑀𝑀_𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1 − ∑ 𝐸𝐸𝐼𝐼𝐼𝐼_𝑖𝑖𝑖𝑖,𝑗𝑗𝑛𝑛
𝑖𝑖=1 × ∑ 𝑅𝑅𝑀𝑀𝑀𝑀_𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1

�𝐺𝐺 × ∑ 𝐸𝐸𝐼𝐼𝐼𝐼_𝑖𝑖𝑖𝑖,𝑗𝑗2𝑛𝑛
𝑖𝑖=1 − (∑ 𝐸𝐸𝐼𝐼𝐼𝐼_𝑖𝑖𝑖𝑖,𝑗𝑗𝑛𝑛

𝑖𝑖=1 )2�𝐺𝐺 × ∑ 𝑅𝑅𝑀𝑀𝑀𝑀_𝑖𝑖𝑖𝑖
2𝑛𝑛

𝑖𝑖=1 − (∑ 𝑅𝑅𝑀𝑀𝑀𝑀_𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 )2

 , (4) 

where 𝑗𝑗 is one of the neutral building characteristics; 𝐺𝐺 is the total number of building samples; 𝐺𝐺 is the 
index for each building sample; 𝐸𝐸𝐼𝐼𝐼𝐼_𝑖𝑖𝑖𝑖,𝑗𝑗 is the ranked value of model input 𝑗𝑗 for building 𝐺𝐺; 𝑅𝑅𝑀𝑀𝑀𝑀_𝑖𝑖𝑖𝑖 is the 

ranked value of the modeled baseline site EUI for building 𝐺𝐺. |𝜌𝜌| ≤ 0.1 means that the correlation between 
two variables is negligible [13]. Therefore, |𝜌𝜌| > 0.1 is used as a threshold to identify the key building 
characteristics that need to be considered when reconciling empirical and modeled baselines in subsection 
2.4. 
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2.4. Individualized empirical baselines 
This research obtains individualized empirical baselines in a fast way by developing mathematical 

models. The key neutral building characteristics identified in subsection 2.3.2 are used as input variables 
for the mathematical models. Extra Trees [14,15] is adopted to estimate the relations between key neutral 
building characteristics and building site EUIs. The structure of Extra Trees is summarized in Fig. 3. 

 
Fig. 3. Structure of Extra Trees [16]. 

Extra Trees constructs the set of decision trees by randomly selecting a subset of the dataset. In the 
training of each decision tree [17], the split point to divide the tree at a particular node is randomly selected. 
[18]. Each decision tree generates one prediction, and the final prediction is based on the majority prediction. 

Extra Trees is a relatively recent machine learning techniques and was developed as an extension of 
random forest algorithm, and is less likely to overfit a dataset [14]. Extra Trees is very similar to Random 
Forest. Both are composed of a large number of decision trees, where the final decision is obtained taking 
into account the prediction of every tree. Furthermore, when selecting the partition of each node, both of 
them randomly choose a subset of the dataset. The difference between Extra Trees and Random Forest is 
the selection of cut points in order to split nodes. Random Forest chooses the optimum split while Extra 
Trees chooses it randomly [19]. Therefore, in terms of computational time, the Extra Trees algorithm is 
faster because it randomly chooses the split point and does not calculate the optimal one. 

The method to measure the quality of the split for one characteristic is the Gini impurity [15,20], as 
shown in the following equation: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺_𝐺𝐺𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝐺𝐺𝑖𝑖𝑖𝑖(𝐷𝐷, 𝑗𝑗) = �
|𝐷𝐷𝑣𝑣|
|𝐷𝐷| 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐷𝐷

𝑣𝑣)
𝑉𝑉

𝑣𝑣=1

 , (5)  
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where, 𝐷𝐷𝑣𝑣  refers to one subset of dataset 𝐷𝐷 classified based on characteristic 𝑗𝑗, 𝐶𝐶 refers to the total 
number of the subsets, |𝐷𝐷𝑣𝑣| and |𝐷𝐷| refer to the total number of samples in subset 𝐷𝐷𝑣𝑣  and in dataset 𝐷𝐷 
respectively. 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (𝐷𝐷𝑣𝑣) is the Gini value of subset 𝐷𝐷𝑣𝑣, which can be expressed in the following equation: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐷𝐷𝑣𝑣) = 1 −�𝐸𝐸𝑡𝑡2
𝑇𝑇

𝑡𝑡=1

 , (6) 

where 𝑇𝑇 is the total number of the output types in subset 𝐷𝐷𝑣𝑣, 𝐸𝐸𝑡𝑡 is the probability that output type 𝑖𝑖 
occurs in subset 𝐷𝐷𝑣𝑣. The less the Gini value is, the higher the purity of the dataset is. 

Gini impurity has a maximum value of 0.5, which is the worst we can get. This means that under the 
split point for one characteristic, the outputs of samples are evenly distributed. Gini impurity has a minimum 
value of 0 is the best we can get. This means that under split point for one characteristic, samples have a 
same output. 

This research used 80% of building samples to train the Extra Trees’ models, and the rest of the 20% 
of building samples were used to validate the developed mathematical models. The mean absolute 
percentage error (MAPE) between individualized empirical baselines and modeled baselines is adopted to 
validate the mathematical models, as shown in the following equation:  

𝑅𝑅𝑀𝑀𝐼𝐼𝐸𝐸 =
100%
𝐺𝐺

��
𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖−𝑅𝑅𝑀𝑀𝑀𝑀𝑖𝑖

𝑅𝑅𝑀𝑀𝑀𝑀𝑖𝑖
�

𝑛𝑛

𝑖𝑖=1

 ,  (7) 

where 𝐺𝐺 is the number of building samples; 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖  is individualized empirical baseline site EUI for 
building 𝐺𝐺; 𝑅𝑅𝑀𝑀𝑀𝑀𝑖𝑖 is the modeled baseline site EUI. If the MAPE value is lower than 10%, the prediction is 
accurate [21]. 

3. Case Study: Medium Office Buildings 

U.S. medium office buildings were used as an example to illustrate the methodology of developing 
individualized empirical baselines. Subsection 3.1 presents the common empirical baselines of U.S. 
medium office buildings in 15 climate zones and two vintages. There is one common empirical baseline for 
buildings in the same climate zone and vintage. Individualized modeled baselines of medium office 
buildings are presented in subsection 3.2. Based on these simulation results, key building characteristics 
that should be neutral in the comparison of energy performance are identified in subsection 3.3. Finally, 
using these key neutral building characteristics as input variables, subsection 3.4 develops mathematical 
models for each climate zone and vintage to get the individualized empirical baseline in a fast way. 
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3.1. Calculation of common empirical baseline 
As described in subsection 2.1, median EUIs of medium offices are needed to derive empirical baselines 

in each climate zone and vintage. Because the CBECS 2012 [22] only has the label for offices, we proposed 
the criteria to filter medium office buildings from all office buildings, as shown in Fig. 4. Total floor area 
and the number of floors is used as two indicators to filter medium office buildings. Because the total floor 
area of the small office reference model is 511 m2 and the total floor area of the large office reference model 
is 46,320 m2 [23], we only consider buildings whose total floor areas are between  511 m2 and 46,320 m2, 
as candidates for medium office buildings. Then, we considered three situations to select medium office 
buildings among these candidates: (1) buildings whose total floor areas are between 1,000 m2 and 10,000 
m2 are considered medium office buildings; (2) buildings whose total floor areas are between 511 m2 and 
1,000 m2, if they have more than one floor, are considered medium office buildings; (3) buildings whose 
total floor areas are between 10,000 m2 and 46,320 m2, if they have less than five floors, are considered 
medium office buildings. 

 

Fig. 4. Criteria to filter medium office buildings from all office buildings 

Based on the filtered medium office building samples from the CBECS 2012, the median site EUI is 
746.26 MJ/m2-yr for pre-1980 medium office buildings and is 700.21 MJ/m2-yr for post-1980 medium 
office buildings. According to the ratio provided by ASHRAE standard 100 [4], empirical baselines of 
medium office buildings in 15 climate zones and two vintages were calculated, as shown in Table 2. The 
division of climate zones is shown in Fig. 5. The buildings in climate zone 8 have a significantly higher 
empirical baseline than the other climate zones due to their large heating needs. The buildings in the post-
1980 vintage have a lower empirical baseline than the buildings in the pre-1980 vintage because the newly 
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constructed buildings have better system efficiency (e.g., the efficiency of the cooling coil) than the older 
buildings. 

Table 2. Common empirical baselines of U.S. medium office buildings 

Climate 
Zone 

Weather 
Feature Representative City 

Empirical Baselines (MJ/m2-yr) 
Pre-1980 Post-1980 

1A Very hot Miami, FL 731.34 686.20 

2A Hot humid Tampa, FL 723.87 679.20 

2B Hot dry Tucson, AZ 731.34 686.20 

3A Warm humid Atlanta, GA 723.87 679.20 

3B Warm dry El Paso, TX 694.02 651.19 

3C Warm marine San Diego, CA 574.62 539.16 

4A Mixed humid New York, NY 783.58 735.22 

4B Mixed dry Albuquerque, NM 679.10 637.19 

4C Mixed marine Seattle, WA 694.02 651.19 

5A Cool humid Buffalo, NY 828.35 777.23 

5B Cool dry Denver, CO 716.41 672.20 

6A Cold humid Rochester, MN 925.37 868.26 

6B Cold dry Great Falls, MT 813.43 763.23 

7 Very cold International Falls, MN 992.53 931.28 

8 Subarctic/arctic Fairbanks, AK 1388.05 1302.39 

 

Fig. 5. International Energy Conservation Code (IECC) climate regions. 
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3.2. Generation of training samples 
Thirty prototypical building energy models (15 climate zones×2 vintages) for U.S. medium office 

buildings were created based on the CBECS 2012 (subsection 3.2.1). Using the 30 models as a starting 
point, subsection 3.2.2 generated 42,000 training samples. 

3.2.1. Prototypical building energy models 
The initial models used in this research are DOE Reference models generated by OpenStudio Standards 

[23], which include 30 models (15 climate zones×2 vintages). Key model inputs were calibrated to let the 
modeled energy consumption match the empirical baselines calculated in subsection 3.1. These key model 
inputs were defined based on our previous research [5,24]. 

For the key model inputs provided in the CBECS 2012, the median value is adopted for prototypical 
building energy models. For example, the median value of the total floor area for medium office buildings 
is 3,437m2, and the median value of the weekly operation is 54 hours. The key model inputs that are not 
provided in the CBECS 2012 were calibrated using the method described in Fig. 2. The ranges of the model 
inputs were determined by referring to the 2012 CBECS and publications [5,23,25–32], as shown in Table 
3.  

Table 3. Ranges of model inputs for creating prototypical medium office building energy models 

Model Input Unit Range Type of 
Relation* 

Aspect ratio - [1.5, 2.4] Type 1 
Floor-to-floor height m [3.96, 5.69] Type 1 
Window-to-wall ratio % [11, 25] Type 1 

Exterior wall insulation R-value m2-K/W 

Pre-1980: 
Climate zones 1~4: [0.38, 1.18] 
Climate zones 5~8: [0.44, 1.69] 
Post-1980: 
Climate zones 1~4: [0.18, 2.26] 
Climate zones 5~8: [0.81, 4.69] 

Type 5 

Roof insulation R-value m2-K/W 

Pre-1980: 
Climate zones 1~4: [1.56, 5.30] 
Climate zones 5~8: [1.60, 6.10] 
Post-1980: 
Climate zones 1~4: [1.80, 3.67] 
Climate zones 5~8: [1.60, 5.68] 

Type 5 

Window U-factor W/m2-K 

Pre-1980: 
Climate zones 1~4: [4.09, 7.00] 
Climate zones 5~8: [2.82, 7.00] 
Post-1980: 
Climate zones 1~4: [3.27, 7.00] 
Climate zones 5~8: [1.99, 6.72] 

Type 4 

Window solar heat gain coefficient 
(SHGC) - 

Pre-1980: 
Climate zones 1~4: [0.22, 0.67]  
Climate zones 5~8: [0.40, 0.77]  
Post-1980: 
Climate zones 1~4: [0.25, 0.65] 

Type 5 
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Model Input Unit Range Type of 
Relation* 

Climate zones 5~8: [0.35, 0.62] 
Infiltration rate m3/s-m2 [0.00031, 0.00113] Type 1 
People density person/m2 [0.0229, 0.0538] Type 1 

Lighting power density W/m2 Pre-1980: [10.76, 23.68] 
Post-1980: [8.61, 18.30] Type 2 

Electric equipment power density W/m2 Pre-1980: [5.38, 14.81] 
Post-1980: [5.38, 13.34] Type 2 

Rated cooling COP - Pre-1980: [2.52, 3.39] 
Post-1980: [2.61, 3.50] Type 3 

Efficiency for heating system - Pre-1980: [0.65, 0.80] 
Post-1980: [0.65, 0.80] Type 3 

Ventilation m3/s-person [0.0066, 0.0261] Type 1 
Efficiency for service water heating 
equipment - Pre-1980: [0.65, 0.80] 

Post-1980: [0.75, 0.83] Type 3 

Indoor heating setpoint temperature oC [20, 22] Type 1 
Indoor cooling setpoint temperature oC [22, 25] Type 1 

* Type of relation is defined in Table 1. 
 

The geometry of prototypical medium office building energy models is shown in Fig.5. The values of 
key model inputs are shown in Table 4 and Table 5. The total floor area of the prototypical medium office 
building energy models is 3,437 m2 with an 18% window-to-wall ratio. It has steel-frame exterior walls and 
insulation entirely above deck roofs. The operation time of this building is from 07:45 am - 6:30 pm on 
weekdays. These 30 prototypical medium office building energy models are provided in the GitHub 
repository [33]. 

 

Fig.6. Geometry of prototypical medium office building energy models based on the CBECS 2012. 

Table 4. Values of key model inputs of prototypical medium office building energy models based on 
the CBECS 2012 

Category  Name  Value 
Weather 
condition 

Climate zone 

1A, Miami, FL 
2A, Tampa, FL 
2B, Tucson, AZ 
3A, Atlanta, GA 
3B, El Paso, TX 
3C, San Diego, CA 
4A, New York, NY 
4B, Albuquerque, NM 
4C, Seattle, WA 
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Category  Name  Value 
5A, Buffalo, NY 
5B, Denver, CO 
6A, Rochester, MN 
6B, Great Falls, MT 
7, International Falls, MN 
8, Fairbanks, AK 

Geometry Total floor area 3,437m2 
Aspect ratio 2.07 
Floor-to-floor height 4.53 m 
Window-to-wall ratio 18% 

Envelope Exterior wall insulation R-value Table 5 
Roof insulation R-value Table 5 
Window U-factor Table 5 
Window SHGC Table 5 

Schedule Occupancy schedule 07:45 am - 6:30 pm 
System schedule 05:45 am - 10:30 pm 

Internal 
load 

People density 0.035 person/m2 
Lighting power density Pre-1980: 18.00 W/m2                          Post-1980: 15.50 W/m2 
Electric equipment power density Pre-1980: 13.08 W/m2                          Post-1980: 8.19 W/m2 
Infiltration rate 0.0010m3/s-m2 for the whole building 

System Rated cooling COP Pre-1980: 3.39                             Post-1980: 3.50 
Efficiency for heating system Pre-1980: 0.65                             Post-1980: 0.80 
Ventilation 0.012 m3/s-person for the whole building 
Efficiency for service water heating 
equipment Pre-1980: 0.70                             Post-1980: 0.83 

Indoor heating setpoint temperature 20 oC 
Indoor cooling setpoint temperature 25 oC 

 

Table 5. Model inputs for envelopes of prototypical medium office building energy models based on 
the CBECS 2012 

Name of Input Unit Vintage 1A 2A 2B 3A 3B 3C 4A 4B 4C 5A 5B 6A 6B 7 8 
Exterior wall 

insulation R-value 
m2-K/W Pre-1980 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.19 1.19 1.19 1.19 1.19 1.69 

Post-1980 0.38 1.34 1.34 2.26 2.26 2.26 2.26 2.26 2.26 4.41 4.41 4.41 4.41 4.46 4.69 
Roof Insulation R-

value 
m2-K/W Pre-1980 4.87 4.87 4.87 4.87 4.87 4.87 4.87 4.87 4.87 4.91 4.91 4.91 4.91 4.91 5.90 

Post-1980 2.26 3.17 3.17 3.67 3.67 3.67 3.67 3.67 3.67 4.31 4.31 4.31 4.31 5.36 5.68 
Window U-factor W/m2-K Pre-1980 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.73 4.73 4.11 4.11 3.99 3.41 

Post-1980 5.25 3.86 3.86 3.29 3.29 3.29 3.29 3.29 3.29 2.41 2.41 2.41 2.41 1.99 1.99 
Window SHGC - Pre-1980 0.38 0.65 0.65 0.67 0.67 0.67 0.67 0.67 0.67 0.76 0.76 0.77 0.77 0.77 0.77 

Post-1980 0.51 0.51 0.51 0.55 0.55 0.55 0.59 0.59 0.59 0.60 0.60 0.62 0.62 0.62 0.62 
 

Fig. 6 shows the energy performance of prototypical medium office building energy models. The 
CV(RMSE) between empirical baselines and modeled energy consumptions for these 30 models is 0.05, 
which meets the requirement of ASHRAE Guideline 14. Most modeled energy consumptions are very close 
to the empirical baselines. The relative difference between the modeled energy consumption and the 
empirical baseline is even lower than 1% for some climate zones, like 1A, 3A, 4C, 6B, and 8 in pre-1980 
and 2A and 4A in post-1980. 
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Fig. 7. Energy performance prototypical medium office building energy models based on the CBECS 

2012. 

3.2.2. Training samples 
Using the prototypical building energy models as a starting point, the neutral model inputs were 

modified to be the same as the candidate buildings. The number of building samples in each climate zone 
and vintage depends on the number of neutral building characteristics (will be introduced in subsection 
3.3.1). To get a large sample of modeled baselines, this study created and simulated 42,000 building samples. 
The distribution of modeled baselines of building samples is shown in Fig. 7 using violin plots. The upper 
line in the violin plot represents the upper quartile site EUI in that climate zone; the middle line in the violin 
plot represents the median site EUI in that climate zone; the lower line in the violin plot represents the lower 
quartile site EUI in that climate zone. The width of each curve corresponds with the approximate frequency 
of that site EUI. Buildings in climate 3C have the most concentrated distribution on site EUI while their 
site EUIs are most discrete in climate 8. 
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Fig. 8. Modeled baselines for medium office buildings in the U.S. 

3.3. Key neutral building characteristics 
Building characteristics that should be neutral in the comparison of energy performance for medium 

office buildings are proposed in subsection 3.3.1. Then, subsection 3.3.2 identifies key neutral building 
characteristics by conducting the correlation test between these proposed neutral building characteristics 
and site EUIs of building samples. 

3.3.1. Neutral building characteristics 
The climate zone and the year of building construction have already been considered as neutral building 

characteristics when developing prototypical building energy models in subsection 3.2.1. Furthermore, this 
research proposed 14 other neutral building characteristics related to building geometry and operation, as 
listed in Table 6. For the model inputs provided by the CBECS 2012 (total floor area, weekly operation 
hours, and window-to-wall ratio), the minimum and the maximum values were defined by excluding 
outliers [34]. The ranges of the other 11 model inputs were defined by referring to existing literature and 
engineering judgment.  

 

Median 
Value

Upper 
quar�le

Lower 
quar�le
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Table 6. Building characteristics that are neutral in energy rating 

Building Characteristics Unit Default Value Range 
Total floor area m2 3,437 [520, 15,130] 

Aspect ratio - 2.07 [1.45, 2.69] 
Floor-to-floor height m 4.53 [3.96, 5.69] 
Window-to-wall ratio - 0.18 [0, 0.65] 
Building orientation degree 0 [0, 360) * 

People density person/m2 0.035 [0.023, 0.054]  
Indoor heating setpoint temperature oC 20 [20, 22]  
Indoor cooling setpoint temperature oC 25 [22, 25] 

Service water usage lpm 1.86 [1.33, 2.43] 
Indoor heating design supply air 

humidity ratio 
kg-water/kg-air 0.0080 [0.0056, 0.0104] 

Indoor cooling design supply air 
humidity ratio 

kg-water/kg-air 0.0085 [0.0060, 0.0111] 

Weekly operation hours hours/week 53.75 [25, 95] 

Electric equipment power density W/m2 Pre-1980: 13.08 

Post-1980: 8.19 
Pre-1980: [5.40, 21.30] 

Post-1980: [3.37, 13.34] 
Ventilation m3/s-person 0.0123 [0.0066, 0.0236] 

* 0 degree means that the direction of the building is south; 90 degree means that the direction of the building is west; 
180 degree means that the direction of the building is east; 270 degree means that the direction of the building is north. 

 

3.3.2. Identification of key neutral building characteristics 
The correlation coefficient (𝜌𝜌) between the proposed neutral building characteristics and site EUIs of 

building samples are shown in Table 7. Total floor area, window-to-wall ratio, and weekly operation hours 
are key neutral building characteristics for pre-1980 medium office buildings in all climate zones. Floor-
to-floor height, people density, indoor cooling setpoint temperature, electric equipment power density, and 
ventilation are key neutral building characteristics for pre-1980 medium office buildings in several climate 
zones. Total floor area, floor-to-floor height, window-to-wall ratio, cooling setpoint temperature, weekly 
operation hours, and electric equipment power density are key neutral building characteristics for post-1980 
medium office buildings in all climate zones. People density and ventilation are key neutral building 
characteristics for post-1980 medium office buildings in several climate zones. 

Table 7. Key building characteristics that are neutral in energy rating for medium office buildings 

Note: light red shading means key neutral building characteristics 

Neutral building 
characteristics 

Climate Zone 

1A 2A 2B 3A 3B 3C 4A 4B 4C 5A 5B 6A 6B 7 8 

Pre-1980 medium office buildings 

Total floor area -0.50 -0.51 -0.57 -0.53 -0.56 -0.53 -0.63 -0.60 -0.63 -0.67 -0.63 -0.72 -0.69 -0.72 -0.75 

Aspect ratio 0.04 0.00 -0.02 0.06 0.05 0.01 0.02 0.02 0.05 0.00 0.01 -0.01 0.04 0.09 0.03 

Floor-to-floor height 0.07 0.11 0.15 0.09 0.14 0.04 0.10 0.11 0.16 0.16 0.17 0.15 0.16 0.19 0.20 

Window-to-wall ratio 0.26 0.30 0.29 0.30 0.30 0.31 0.26 0.25 0.21 0.24 0.30 0.22 0.23 0.17 0.20 

Building orientation 0.02 0.02 -0.01 -0.02 -0.03 0.01 0.01 0.01 0.01 0.01 -0.05 0.00 0.00 0.04 -0.01 

People density 0.01 0.02 0.01 0.06 0.02 0.06 0.08 0.03 0.09 0.15 0.05 0.10 0.14 0.20 0.26 
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Neutral building 
characteristics 

Climate Zone 

1A 2A 2B 3A 3B 3C 4A 4B 4C 5A 5B 6A 6B 7 8 
Indoor heating  

setpoint temperature 0.00 -0.04 0.00 -0.03 0.02 0.05 0.01 0.06 0.00 0.03 0.02 -0.01 0.05 0.02 -0.03 

Indoor cooling  
setpoint temperature -0.15 -0.13 -0.13 -0.15 -0.16 -0.15 -0.09 -0.07 -0.05 -0.08 -0.08 -0.05 -0.04 -0.07 0.03 

Service water usage 0.03 0.01 0.03 -0.01 -0.01 0.02 -0.03 0.04 0.07 -0.04 0.06 0.05 -0.03 0.03 0.01 
Indoor heating design  

supply air humidity ratio 0.01 -0.02 -0.02 0.03 0.01 -0.01 -0.04 -0.04 -0.02 0.00 0.01 -0.05 0.02 0.00 0.01 

Indoor cooling design  
supply air humidity ratio -0.01 -0.01 -0.02 -0.03 0.01 0.03 -0.02 0.02 -0.03 0.03 0.00 -0.02 0.04 -0.03 0.02 

Weekly operation hours 0.64 0.59 0.58 0.60 0.56 0.59 0.55 0.57 0.49 0.50 0.55 0.45 0.47 0.39 0.28 

Electric equipment power density 0.39 0.36 0.31 0.38 0.35 0.31 0.27 0.31 0.25 0.20 0.24 0.16 0.20 0.13 0.07 

Ventilation 0.02 0.06 0.06 0.03 0.01 -0.01 0.14 0.05 0.10 0.21 0.13 0.19 0.15 0.28 0.28 

Post-1980 medium office buildings 

Total floor area -0.55 -0.58 -0.64 -0.58 -0.62 -0.60 -0.67 -0.66 -0.67 -0.67 -0.63 -0.69 -0.70 -0.74 -0.75 

Aspect ratio 0.06 -0.02 0.07 0.01 0.02 0.03 0.04 -0.01 0.00 0.06 0.07 0.03 -0.01 0.01 0.06 

Floor-to-floor height 0.13 0.15 0.13 0.12 0.14 0.11 0.14 0.16 0.18 0.12 0.12 0.19 0.12 0.20 0.17 

Window-to-wall ratio 0.52 0.44 0.39 0.46 0.45 0.43 0.39 0.46 0.48 0.40 0.43 0.39 0.44 0.32 0.29 

Building orientation 0.00 0.00 -0.01 0.02 0.06 0.00 -0.04 -0.03 -0.03 0.03 -0.01 0.01 -0.01 -0.02 0.02 

People density 0.12 0.08 0.05 0.05 0.02 0.05 0.09 0.06 0.03 0.10 0.03 0.10 0.03 0.11 0.19 
Indoor heating  

setpoint temperature -0.02 0.04 0.02 0.00 0.07 -0.01 0.00 0.02 0.00 0.03 0.03 0.00 -0.01 0.02 0.00 

Indoor cooling  
setpoint temperature -0.28 -0.29 -0.23 -0.29 -0.25 -0.26 -0.31 -0.23 -0.28 -0.25 -0.24 -0.20 -0.18 -0.20 -0.12 

Service water usage -0.01 -0.04 -0.01 -0.06 -0.03 -0.04 0.00 0.01 0.01 -0.01 0.00 0.01 0.02 -0.02 0.00 
Indoor heating design  

supply air humidity ratio 0.06 0.03 -0.02 0.02 0.01 -0.02 0.00 -0.03 0.00 -0.02 0.02 -0.01 0.02 -0.02 0.04 

Indoor cooling design  
supply air humidity ratio -0.02 -0.04 0.03 -0.05 0.02 -0.08 0.06 0.05 0.01 -0.01 0.03 0.04 -0.05 -0.03 0.02 

Weekly operation hours 0.28 0.31 0.29 0.29 0.34 0.34 0.27 0.25 0.30 0.27 0.30 0.24 0.29 0.26 0.15 

Electric equipment power density 0.32 0.34 0.31 0.31 0.32 0.34 0.26 0.30 0.21 0.22 0.26 0.21 0.22 0.15 0.17 

Ventilation 0.13 0.05 0.04 0.08 0.03 -0.02 0.14 0.03 0.02 0.09 0.08 0.12 0.12 0.18 0.29 

 

3.4. Individualized empirical baselines 
Using the key neutral building characteristics in corresponding vintage and climate zone as input 

variables, this research developed mathematical models to get individualized baselines in a fast way. These 
30 well-trained mathematical models were provided in GitHub [35].  

To validate these mathematical models, we generated individualized empirical baselines for the rest of 
20% of building samples. The MAPE between individualized empirical baselines and their modeled 
baselines for these 30 mathematical models are listed in Table 8, which are all lower than 5.5%. According 
to the criteria proposed by Setiawan et al. [21], if the MAPE value is lower than 10%, the prediction is 
accurate. Subsection 4.1 will introduce the application of these mathematical models for engineers to 
generate individualized empirical baselines in a fast way. 
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Table 8. Performance of mathematical models to generate individualized empirical baselines 

Mathematical 
Model MAPE  Mathematical 

Model MAPE 

Pre-1980, 1A 3.6%  Post-1980, 1A 4.7% 
Pre-1980, 2A 3.5%  Post-1980, 2A 4.2% 
Pre-1980, 2B 3.6%  Post-1980, 2B 4.5% 
Pre-1980, 3A 3.8%  Post-1980, 3A 4.4% 
Pre-1980, 3B 4.0%  Post-1980, 3B 4.2% 
Pre-1980, 3C 3.7%  Post-1980, 3C 3.8% 
Pre-1980, 4A 4.3%  Post-1980, 4A 4.3% 
Pre-1980, 4B 4.3%  Post-1980, 4B 5.3% 
Pre-1980, 4C 4.3%  Post-1980, 4C 4.8% 
Pre-1980, 5A 3.8%  Post-1980, 5A 5.0% 
Pre-1980, 5B 4.0%  Post-1980, 5B 5.1% 
Pre-1980, 6A 4.2%  Post-1980, 6A 4.5% 
Pre-1980, 6B 3.8%  Post-1980, 6B 4.7% 
Pre-1980, 7 3.7%  Post-1980, 7 4.3% 
Pre-1980, 8 4.0%  Post-1980, 8 4.6% 

 

Fig. 8 shows the quantile-quantile plot between individualized empirical baselines and modeled 
baselines for all building samples. One red dot represents one building sample. If a red dot is close to the 
black line, it means that the individualized empirical baseline of this building is close to its modeled baseline. 
The relative errors between the individualized empirical baseline and the modeled baseline for all validated 
building samples are lower than 25%.  
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Fig. 9. Quantile-quantile plot between individualized empirical baselines and modeled baselines for 

the validation building samples 

4. Discussion 

4.1. Application of this research on medium office buildings in the U.S. 
The mathematical models developed in this research can be directly used for a medium office building 

in the U.S to obtain its individualized empirical baseline following three steps (Fig. 9). After downloading 
the mathematical models from the GitHub repository [35], the user should first check key neutral building 
characteristics in corresponding climate zones and vintages in the key_neutral_building_characteristics.csv 
file. Then, the user needs to add the value of key neutral building characteristics of the candidate building 
in the input_file.csv file. The final step is running the main.py. The individualized empirical baseline of the 
candidate building is generated in a few seconds and saved in the individualized_empirical_baseline.txt file. 
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Fig. 10. General steps and one example to get individualized empirical baselines for medium office 
buildings 

For example, an engineer may want to get the individualized empirical baseline for a medium office 
building in climate zone 1A built before 1980. As illustrated in key_neutral_building_characteristics.csv 
file, the key neutral building characteristics in pre-1980 climate 1A are total floor area, window-to-wall 
ratio, indoor cooling setpoint temperature, weekly operation hours, and electric equipment power density. 
Next, we need to put the value of these five building characteristics of the candidate medium office building 
in the input_file.csv file. Then, we need to run the main.py, and the individualized empirical baseline of 
this medium office building is saved in the individualized_empirical_baseline.txt file, which is 760.07 
MJ/m2-yr. 

4.2. Application of this research on other types of commercial buildings in the U.S. 
To get individualized empirical baselines for other commercial buildings in the U.S., mathematical 

models should be reconstructed by following the methodology illustrated Fig.1. Empirical baselines and 

Step 1: Check key neutral 
building characteris�cs in 
corresponding climate 
zones and vintages 

Main.py

key_neutral_
building_

characteris�cs.csv

input_file.csv

individualized_
empirical_

baseline.txt

Step 2: Add the value of 
key neutral building 
characteris�cs of a
candidate building

Step 3: Run main.py

Individualized empirical 
baseline of the candidate 
building is saved

pre1A pre2A …
Total_floor_area Total_floor_area …

Window_to_wall_ra�o Floor_to_floor_height …
Indoor_cooling_setpoint_temperature Window_to_wall_ra�o …

Weekly_opera�on_hour Indoor_cooling_setpoint_temperature …
Electric_equipment_power_density Weekly_opera�on_hour …

Electric_equipment_power_density

Unit Value Suggested Range
Climate - pre1A -

Total_floor_area m2 1341 [520, 15130] 
Aspect_ra�o - [1.45, 2.69]

Floor_to_floor_height m [3.96, 5.69]
Window_to_wall_ra�o - 0.22 [0, 0.65]

Building_orienta�on - [0, 360]
People_density person/m2 [0.023, 0.054]

Indoor_hea�ng_
setpoint_temperature

oC [20, 22]

Indoor_cooling_
setpoint_temperature

oC 25 [22, 25]

Service_water_usage lpm [1.33, 2.43]
Indoor_hea�ng_design_

supply_air_humidity_ra�o kg-H2O/kg-air [0.0056, 0.0104]

Indoor_cooling_design_
supply_air_humidity_ra�o kg-H2O/kg-air [0.0060, 0.0111]

Weekly_opera�on_hour hours/week 28 [25, 95]
Electric_equipment_power

_density W/m2 10.56 Pre-1980: [5.40, 21.30] 
Post-1980: [3.37, 13.34] 

Ven�la�on m3/s-person [0.0066, 0.0236]

key_neutral_building_characteris�cs.csv

input_file.csv

individualized_empirical_baseline.txt
760.07 MJ/m²-yr

General Steps One Example
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modeled baselines need to be recreated. Neutral building characteristics and their possible values may need 
to be considered. For example, gas equipment use density should be considered as a neutral building 
characteristic for restaurant buildings. 

5. Conclusion 

This research developed a methodology to get individualized empirical baselines for existing buildings 
in a fast way. First, empirical baselines are created based on survey data. Then, to get training samples, 
building energy models for large-scale existing buildings are created and simulated. Finally, based on 
simulation results, mathematical models to get individualized empirical baselines in a fast way are created. 
This research used U.S. medium office buildings as an example to demonstrate the method. Empirical 
baselines for the U.S. medium office buildings in 30 conditions combining two vintages (constructed before 
1980 and after 1980) and 15 climate zones were calculated based on the 2012 CBECS data and ASHRAE 
standard 100. Then, to get training samples, 42,000 building energy models based on the 2012 CBECS data 
were created and simulated. Finally, based on the simulation results, we developed 30 mathematical models 
to get individualized empirical baselines for existing buildings. Those mathematical models were accurate 
because the MAPEs between individualized empirical baselines and modeled baselines are all lower than 
5.5%. An engineer can get the individualized empirical baseline for a medium office building in a few 
seconds by using the open-source tool we developed [35].   

The contribution of this study mainly lies in the following two aspects. First, this research developed a 
methodology to obtain individualized empirical baselines in a fast way, which can be applied to all 
commercial buildings in the U.S. Using this method. Second, this research developed prototypical building 
energy models for medium office buildings based on the latest available survey data. Those models can be 
used to study the energy and carbon emissions of medium office buildings in the U.S. 
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