
Next Best Sense: Guiding Vision and Touch with FisherRF for 3D
Gaussian Splatting

Matthew Strong∗1, Boshu Lei∗3, Aiden Swann2, Wen Jiang3, Kostas Daniilidis3, Monroe Kennedy III2

Abstract— We propose a framework for active next best view
and touch selection for robotic manipulators using 3D Gaussian
Splatting (3DGS). 3DGS is emerging as a useful explicit 3D
scene representation for robotics, as it has the ability to repre-
sent scenes in a both photorealistic and geometrically accurate
manner. However, in real-world, online robotic scenes where
the number of views is limited given efficiency requirements,
random view selection for 3DGS becomes impractical as views
are often overlapping and redundant. We address this issue
by proposing an end-to-end online training and active view
selection pipeline, which enhances the performance of 3DGS in
few-view robotics settings. We first elevate the performance of
few-shot 3DGS with a novel semantic depth alignment method
using Segment Anything Model 2 (SAM2) that we supplement
with Pearson depth and surface normal loss to improve color
and depth reconstruction of real-world scenes. We then extend
FisherRF, a next-best-view selection method for 3DGS, to
select views and touch poses based on depth uncertainty. We
perform online view selection on a real robot system during live
3DGS training. We motivate our improvements to few-shot GS
scenes, and extend depth-based FisherRF to them, where we
demonstrate both qualitative and quantitative improvements on
challenging robot scenes. For more information, please see our
project page at armlabstanford.github.io/next-best-sense.

I. INTRODUCTION

As robots become more capable of performing manipu-
lation in daily tasks, it is important for them to efficiently
model the scene and relevant objects [1], [2]. One prominent
explicit 3D representation is 3D Gaussian Splatting (3DGS)
[3], which reconstructs a 3D scene from RGB images and
camera poses. Traditionally, the creation of 3DGS scenes
is done with a). many views and b). complete human
supervision. 3DGS is well-known for requiring tens of views
and near-perfect camera poses; as it is prone to overfitting on
sparse input views. This approach, however, is inconsistent
with many of the potential robotic applications of 3DGS. In
a robotic setting, every additional view is costly, requiring
movement and potentially limited onboard compute. It is
often inefficient to collect hundreds of views required for
training a 3DGS model in robotic environments. For future
applications of 3DGS on robotics systems, robust few-view
training methods are needed. Even the assistance of depth
priors for regularization in prior work [4]–[7] often relies on
high quality visual data for constructing a precise 3D scene.
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Fig. 1: Our method outperforms random view selection for
few view 3DGS scenes. We show a series of robot views,
with the next view proposed by our method compared to
random. Our method maximizes the Fisher information gain
for each view over both vision and touch inputs.

To address this, we propose the use of semantic depth
alignment to enhance the impact of each additional view.
We draw from the power of state-of-the-art monocular depth
estimation models, and with an off-the-shelf depth camera
and color image, we perform a semantic depth alignment
by aligning objects and the background of an image with
Segment Anything Model 2 (SAM2) [8]. This is used as a
form of initialization in our few-shot scene. During training,
depth supervision is enforced with a relaxed relative loss,
which mitigates the scale ambiguities between the true depth
and estimated depth from the depth estimation models.
Gentle normal supervision and camera optimization guide
the Gaussian Splat to reconstruct a visually accurate scene.

In addition to maximizing the impact of each of the limited
training views, we propose a method to optimally select the
next best view based on depth uncertainty and optionally
color uncertainty. When there are a limited number of views
available, uncertainty emerges from depth discontinuities,
occluded regions, and sources of aleatoric error. It is critical
to understand where next best views and touches should be
made in a scene to reduce this uncertainty and construct
precise representations for effective robot operation.

In order to determine the optimal next view in a radi-
ance field, we develop a uncertainty metric and maximize
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uncertainty gain. Past work in uncertainty quantification in
radiance fields includes per-pixel uncertainty, ray entropy,
ensemble methods, and interpreting the radiance field as a
probability distribution [9]–[12]. These works require signif-
icant modifications to the original radiance field architecture,
become computationally infeasible in the case of ensemble-
based uncertainty, and make assumptions about ray density
distributions that are not generalizable. FisherRF [13], a
recent state-of-the-art work in uncertainty quantification, uses
the Fisher Information to quantify observed information
without any ground truth data. Only requiring one backward
pass, FisherRF is broadly generalizable to explicit radiance
fields like Gaussian Splatting, making it a suitable method
for robotics applications.

FisherRF computes the expected information gain on
candidate views of 3DGS to then select the next best view.
Unlike FisherRF, recent research on NBV in offline and
online applications [10]–[12] leverages prior methods for
uncertainty quantification and is only applied to implicit ra-
diance fields methods like Neural Radiance Fields (NeRFs).

We extend FisherRF to select views and touches based on
depth uncertainty. We posit that the geometry and visual
quality of a scene can be guided through depth, as we observe
that regions of erroneous color in Gaussian Splats are often
associated with ambiguous depth. This framework can be
easily extended to touch, which has been shown to improve
3DGS quality [14].

The integration of touch into 3DGS is still limited, how-
ever – only Touch-GS [14] and Snap-It, Tap-It, Splat-It
[15] address touch-informed 3DGS, as compared to several
works fusing vision and touch for manipulation [16]–[21].
While Touch-GS demonstrates the improvements on 3DGS
scenes with touch, it suffers from two shortcomings: 1. it
requires a human to move the robot to desired vision and
touch poses and 2. requires the order of 100-500 touches
to construct a visually and geometrically sufficient scene.
Snap-It, Tap-It, Splat-It similarly requires manual views. Our
method automonously selects views and touches guided by
uncertainty.

Altogether, we construct a framework that enables for
the autonomous sense selection with a robotic manipulator,
which we call Next Best Sense.
Key Contributions. We propose Next Best Sense, the first
approach that enables uncertainty-guided view and touch
selection for training a 3DGS for robotic manipulators. Our
main contributions in Next Best Sense are as follows: 1) We
propose an improved method in few-shot 3DGS scenes with
a novel depth alignment method using Segment Anything
Model 2. 2) We present a novel extension of FisherRF by
leveraging depth uncertainty to assist in view and touch
selection. 3) We present a closed-loop framework coupling
both perception and action for training few-view scenes
for robotic manipulators with FisherRF. To the best of our
knowledge, this is the first work that enables next best view
planning for Gaussian Splatting for robot manipulators in
real-time. 4) We extend our method to uncertainty-guided
touch, demonstrating qualitative improvements with only 10

touches.
The remainder of the paper is outlined as follows. Section

II covers mathematical preliminaries, and Section III intro-
duces our method. Section IV showcases our results, and
finally, Section V discusses these results and future avenues
of research.

II. PRELIMINARIES

A. 3D Gaussian Splatting

3D Gaussian Splatting is an explicit 3D representation
that represents a scene with 3D Gaussians. Each Gaussian is
parameterized by a mean position µ ∈ R3 and covariance
Σ ∈ R3×3. The covariance is computed as the product
of a diagonal scale matrix S ∈ R3×3 and rotation matrix
R ∈ R3×3 as Σ = RSSTRT . Each Gaussian also contains
an opacity value α ∈ R and spherical harmonic parameters
to compute color. The color and depth of each pixel in
a rendered image can be computed as blending ordered
points along a camera ray, which with camera origin o and
orientation d is defined as: r(t) = o + td. The color C(r)
and depth D(r) is computed by blending ordered points
intersecting the ray:

Ĉ =
∑
i∈N

ciαiTi, D̂ =
∑
i∈N

diαiTi, (1)

where Ti =
∏i−1

j=1(1−αj), which is the transmittance, con-
cretely defined as multiplying the previous Gaussian opacity
values intersecting the ray. During training, the parameters
of each Gaussian are optimized with gradient descent to
minimize the following photometric loss betweeen a ground
truth and rendered image: as L = (1 − λ)L1 + λLSSIM,
where L1 is the absolute loss between the RGB values
of the rendered and ground truth image, and LSSIM is the
Structural Similarity Index Measure (SSIM) loss. Further,
we can extend the loss to include Ldepth, which uses the
ground truth and rendered depth image.

B. Next Best View Selection

We use FisherRF [13] for next best view selection. The
problem of selecting the next best view is formulated as
maximizing the Fisher information gain between candidate
RGB camera poses xacq

i and views yacq
i and captured training

RGB views Dtrain, given Gaussians’ parameters w∗.

I[w; {yacq
i }|{xacq

i }, Dtrain]

= H[w∗|Dtrain]−H[w∗|{yacq
i }, {xacq

i }, Dtrain]
(2)

Here, H[·] is the entropy. From [22], the next best view
objective is to maximize the reduction in entropy. In [23],
the entropy of the model parameters can be approximated
using a second order expansion.

H[ω∗] = −1

2
log detH ′′[w∗] (3)

Using the inequality log det(A + Id) < tr(A), the final
objective function for the next best view is [23]:



Fig. 2: Mesh of Incorporating Lifted Depths (left) and Lifted
SAM2 Depths (right). A semantic alignment provides a
robust initialization for 3DGS.

argmax
xacq
i

tr(H′′[yacq
i |xacq

i , w∗]H′′[w∗|Dtrain]−1) (4)

The Hessian matrix H′′ can be computed just from the
Jacobian matrix, which only requires a single backward pass
on a given view. In practice, we apply Laplace approximation
that approximates the Hessian matrix with its diagonal values
plus a prior regularizer [13], [24].

H′′[y|x,w∗] = ∇wf(x;w
∗)T∇wf(x;w

∗)

≈ diag(∇wf(x;w
∗)T∇wf(x;w

∗)) + λI
(5)

We present our extension to FisherRF for depth later in
the methods section.

III. METHOD

We now present Next Best Sense. The method is divided
into three components: 1. Few Shot Gaussian Splatting,
2. Next Best View for Robotics, and 3. Next Best Touch.
We leverage the real-time rendering capabilities of 3DGS to
propose new views and touches in real-time.

A. Few-Shot Gaussian Splatting

In environments where robots are constrained to efficiently
utilize a limited number of views, traditional Gaussian Splat-
ting training collapses, suffering from poor reconstruction
and overfitting. Specifically, 3DGS is known to be highly
sensitive to initialization in the few-view case, requiring
extra care to align the initialization points. We improve the
performance of few-shot Gaussian Splatting by optimizing
the manner in which depth is handled during initialization
and training.

1) SAM2 Depth Alignment: We posit that depth alignment
should be done semantically, and supervision should be
done relatively. When aligning a depth image and camera
image, the depth of objects and components of a scene is
based on the fact that the objects are semantically different.
Concretely, we run the Segment Anything Model 2 automatic
mask generator, which outputs a list of masks M in image
I . The alignment can be observed in Fig. 3. With an metric
depth map from a depth sensor Dreal, corresponding image
I , monocular depth DMDE, and list of masks M , we perform
a mask-aware depth alignment as follows:

Fig. 3: SAM2 Alignment. Given an RGB image and depth
image, we provide the RGB as input to a monocular depth
model to get relative depths, and run the SAM2 automatic
mask generator to get object and scene masks. We then align
each object in the monocular depth with the corresponding
sensor depth.

s∗Mi
, t∗Mi

= argmin
s,t

∑
p∈Dreal

||Dreal,Mi
(p)−DMDE,Mi

(p; s, t)||2

(6)
where s∗Mi

is the scale factor on the pixels in mask Mi,
t∗Mi

is the offset, and p is a depth keypoint from sensor
depth image Dreal. An example of the few shot depths back-
projected into 3D and into a mesh can be found in Fig.
2. Finally, the user is asked to use SAM2’s point prompt to
mark the selected object in a single frame. We then propagate
this to all other frames, which computes a mask. We add this
mask to our list of masks to ensure object alignment. This
method maintains the metric accuracy of a depth sensor but
the geometric quality of monocular depth models.

We lift the SAM2 aligned monocular depths into 3D
and take a random percentage of them to initialize 3DGS,
where a Gaussian of random color is constructed from
each depth pixel. We find that this guides the few views
to learn smoother geometries in the scene as compared to
initialization from sensor depth data.

2) Geometric Depth Guidance: Drawing from prior works
in few-shot GS, we introduce Pearson Relative Depth Loss
to gently guide depth in our scene. We use the monocular
depth output from a model such as DepthAnythingV2 [25]
or Metric3DV2 [26] and measure the distribution difference
between rendered and monocular depth maps.

We also incorporate scale regularization in our work,
detailed in PhysGaussian [27], to reduce highly anisotropic
Gaussians in our scene. Normal regularization is also lightly
used, in which we use work from DN-Splatter [28] to derive
normals, where we can approximate the surface normals
from the monocular depth map, and during training, we
minimize one of the scaling coefficients during training to
encourage the Gaussians to become a flat like disc. Finally,
we apply camera optimization on our views by adjusting the
translation and rotation in SO(3)× R3 for each view.

3) Learning a 3D SAM2 Object Mask: We render a sepa-
rate image from GS for our object mask, which we can then
perform binary cross entropy with the SAM2 Mask. This
allows us to compute the 3D Gaussians that are associated



with the object, which we propose to use for touch.

B. Next Best View for Robotics
Real world robot environments are visually feature-rich

and full of color. FisherRF will select views that have a
high Hessian with respect to the rendered color image,
meaning that candidate views with high gradients of color are
more likely to be selected. In the case of color-rich, opaque
surfaces, FisherRF will select new views around these areas
simply because of the high change in color. We assert that
FisherRF should be extended to encode depth uncertainty,
which is a strong indicator of geometric accuracy, and may
be an even stronger metric of uncertainty as compared to
color uncertainty. To achieve this, we formulate a depth-
based negative log-likelihood objective for the radiance field
similar to [13] as follows:

− log p(yD|x,w) = (yD − fD(x,w))T (yD − fD(x,w))
(7)

where yD is the ground truth depth, and fD is the
depth rasterizer that outputs depth given camera pose x
and Gaussian Splat parameters w. As this objective simply
replaces color terms with depth terms in FisherRF, we follow
the derivation in [13] and formulate the depth information
gain objective as

argmax
xacq
i

tr(H′′[yacq
D,i|x

acq
i , w∗]H′′[w∗|Dtrain]−1), (8)

where yacq
D,i is the depth. However, the Hessian

H′′ only depends on the model input and
parameters, so it can be reduced to the Jacobian as
diag(∇wfD(x;w∗)T∇wfD(x;w∗)) + λI , where we
compute the gradient of the depth rasterization for a given
view. We then define the information gain as a linear
combination of the color and depth information gain:

I[w] = αI[w; fC ] + βI[w; fD], (9)

where α weights the color information gain, and β weights
the depth information gain, and fC and fD are the color and
depth rasterizers, respectively. This addition is computation-
ally efficient as it requires one more backward pass on depth
per view. Our formulation allows to encode the uncertainty
as how much depth changes in a given view; discontinuous
depths in and floaters are more likely to be removed.

1) Robotic Next Best View: With the formulation of
FisherRF, we perform our robotic procedure as follows.

Collect Random Views. First, n (n < 9) random views
are collected by sampling poses in a sphere of radius
uniformly sampled from rmin < r < rmax, where the center
camera ray points directly at the object center. For each view,
we compute the monocular depth, SAM2 aligned monocular
depth, and store these with the camera pose, color image,
and SAM2 mask.

View Selection During Training: During training, the
Gaussian Splat queries the robot for a list of feasible candi-
date views; we then run FisherRF to compute the next best
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Fig. 4: Tactile Data Supervision. We backproject points
from a fisheye coordinate to form a triangle face Pu, Pv, Pm,
which is projected onto image plane and rasterizes the
corresponding area u′, v′,m′ for touch depth supervision.

view. The robot moves to the highest view score. If any errors
are encountered in inverse kinematics or trajectory planning,
we select the next highest scoring view.

Add New View: We then add the view, monocular depth,
SAM2 aligned depth, camera pose, color image, and SAM2
object mask. We store the point prompt on the first view and
propagate it to SAM2 as new views are added.

C. Next Best Touch

Touch provides accurate local geometries of a surface,
regardless of lightning condition. It is then favorable to
integrate it into our work as a tool to refine a scene. To
do this, we propose to use FisherRF depth after our vision
phase to propose new touches for GS.

We select touches similarly to vision. We compute the
next best touch by computing the expected information gain
of a pseudo touch camera only on depth. This ensures that
more spikey and hole-like areas along an object are selected.
We first only compute the depth uncertainty of Gaussians
from the SAM2 object mask, ensuring spurious Gaussians
not part of the object are ignored. As we add touches, we
add them to the list of training views with different intrinsics
to represent the touch camera. However, the touch poses
are often too close to the surface of the object, which we
address by moving the candidate touch view away from the
object along its z axis till a surface of non-zero depth can
be rendered.

We then collect a tactile image It and its pose pi. We first
use a pretrained DenseNet model [29] to predict the depth
along the ray, denoted as Id. For each ray ti from the fish-
eye camera, we unproject pixels into the point cloud point
pi = d · ti. We filter the points by their radial distance from
the center and then by their z coordinate. Directly projecting
the point cloud points to camera frame will lead to a sparse
depth map. We convert the point cloud to triangle mesh
using the connectivity from tactile image, and then rasterize
the triangles into the image plane. The depth image is later
used as depth supervision for Gaussian training, where we
initialize Gaussians at the point of touch. We adopt L1 depth
loss with smoothing around the point of touch, and the whole
process is shown in Fig. 4.



Method PSNR↑ SSIM↑ LPIPS↓

3DGS w/o Depth 15.66 0.49 0.53
Dense-Depth [4] 18.82 0.55 0.44
Pearson Loss Depth 18.32 0.54 0.45
Lifted Depth, MSE Loss 19.82 0.58 0.36
Lifted SAM2 Depth, Pearson Loss 20.21 0.65 0.43
Lifted SAM2 Depth, MSE Loss 20.33 0.67 0.41

TABLE I: Blender few-shot scene ablations with 3DGS

Method D-ABS↓ D-ABS-O↓

Dense-Depth [4] 0.27 0.20
Lifted Depth, MSE Loss 0.18 0.035
Lifted SAM2 Depth, MSE Loss 0.16 0.033

TABLE II: Blender simulated few-shot ground truth depth
comparison. D-ABS is the error across the whole view; D-
ABS-O is the error for only the bunny.

IV. RESULTS

A. Few Shot Gaussian Splatting for Robotics

1) Stanford Bunny Blender: We demonstrate our improve-
ments to Gaussian Splatting on the Touch-GS [14] dataset
to highlight the improvements to vision for robotic tasks. To
start, we perform ablations starting from vanilla 3DGS. We
use the camera poses from Blender and use the perturbed
ground truth depths with noise that quadratically increases
with distance to simulate real depth. We use Nerfstudio [30]
and implement depth supervision, normal supervision, and
initialization of Gaussians from depth maps. We train on
only 6 views for 15000 steps as convergence is reached early.
We test PSNR, SSIM, and LPIPs for 34 unseen novel views
on 3 trials and report the mean, and additionally the mean
absolute error for ground truth depth.

As seen in Table I, depth supervision guides the geometric
and visual quality of 3DGS; however, it still suffers from
sparsity. Lifting the aligned Gaussians improves the density
of the scene but is not as geometrically accurate as using
SAM2 aligned depths for initialization. Across all visual
metrics, SAM2 aligned depths improve the visual quality
across test scenes besides LPIPS (shown as the green value).
Further, the mean absolute error in depth in the SAM2
aligned depths is the best, highlighting its usefulness as a
depth prior.

2) Stanford Bunny Real and Challenge Objects: With a
3D printed model of the Stanford bunny, we highlight our
improvements in a real scene with low resolution visual and
depth data. In Table III, metric depth loss on aligned depths
becomes infeasible, and our method outperforms current
baselines. We further include camera optimization, which
improves the quality of the scene as the camera pose of
the robot is not optimal. Finally, we test our method on a
challenging mirror and prism, with normal supervision and
camera optimization turned on as shown in Table IV. We
refer interested readers to our website for more information.

B. Offline FisherRF

We highlight the improvement of FisherRF for depth
to our two bunny scenes, reporting the mean PSNR, SSIM,

Fig. 5: FisherRF Ablations Qualitative results of Random
(Left), FisherRF Color (Middle) and FisherRF Depth (Right).

Method PSNR↑ SSIM↑ LPIPS↓

3DGS 10.63 0.43 0.58
Dense Depth 11.25 0.44 0.56
Pearson Loss Depth 11.68 0.47 0.54
Lifted Aligned Depth Pearson 11.79 0.47 0.53
SAM2 Lifted Aligned Depth Pearson 11.84 0.47 0.54
Ours with Normal Supervision 11.86 0.47 0.54
Ours with Camera Optimization 12.30 0.50 0.54

TABLE III: Few-Shot Bunny Real Results

and LPIPS from five trials. We train GS for 15000 steps and
select a new view every 2000 steps according to FisherRF,
turning camera optimization off to see the direct effect of
an added view and its pose. We verify on random, FisherRF
depth, RGB (baseline), and a combination of the two with
our formulation in Eq. 9. Selecting random views performs
the worst, and while the baseline FisherRF on color is a
significant improvement over random views, it does not
select views that improve the geometric construction, as seen
in Fig 5, where the geometries to the right of the back chair
are incorrect. In fact, the head of the bunny is the sharpest in
FisherRF depth. We posit that FisherRF on depth additionally
receives the benefits of FisherRF color – we notice that very
different colored Gaussians, which are higher areas of color
uncertainty, often are associated with ambiguous depths.
However, the converse is not necessarily true, which provides
additional benefit to the scene. The difference is smaller
between the two in the real world; however, we choose to
use FisherRF on depth for the following experiments.

C. Robotic FisherRF

We apply our method to a real-world robotics scenario
on challenging objects – the Stanford bunny, a toy Toyota
Corolla, mirror, prism and 3D-printed ridged object. We use
the Kinova Gen3 robot, and create an in-house pipeline
in Docker using ROS, which is interfaced directly with
Nerfstudio, allowing us to train a Splat and add views in
real-time.

We start with only 8 random views. For each object, we
keep the starting views the same for each method, and the
list of candidate views every 2000 steps is kept the same
(10 kinematically feasible poses). We train to 21000 steps.
All experiments are run in real-time. We test each Splat
on a held-out set per object of 25-40 views. The result
is summarized in Table VI, with qualitative results in Fig
6. For all the objects, FisherRF performs better than the
random baseline. We note that FisherRF on depth performs
the best for the real world bunny – better than our baseline



Fig. 6: Qualitative Results of Next Best View

Object Method PSNR↑ SSIM↑ LPIPS↓

Mirror Pearson-Depth 10.71 0.38 0.61
Our Method 10.74 0.40 0.59

Prism Dense-Depth 12.15 0.48 0.55
Our Method 12.24 0.48 0.53

TABLE IV: Few-Shot GS on Challenge Objects

Object Method PSNR↑ SSIM↑ LPIPS↓

Bunny Blender Random 23.68 0.68 0.24
FisherRF RGB 24.41 0.68 0.22

FisherRF Depth 24.63 0.69 0.21
FisherRF Combined 24.73 0.69 0.22

Bunny Real Random 12.20 0.47 0.49
FisherRF RGB 12.62 0.50 0.45

FisherRF Depth 12.67 0.50 0.45
FisherRF Combined 12.67 0.50 0.45

TABLE V: Offline FisherRF

of FisherRF on color – which comes from FisherRF depth
encouraging new views to a robot to explore the background
more, which originally is highly discontinuous. We see this in
the toy car as well. On the mirror, prism, and ridged objects,
FisherRF performs a depth smoothing effect by suggesting
new views that learn the geometry of a scene more precisely,
and visually generalizes to new views. We find that real world
scenes are color rich but objects are geometrically smooth.
Additionally, our few-shot method is showcased, as the scene
remains visually and geometrically crisp.

D. FisherRF and Touch Data Supervision

As a final experiment, we verify the usefulness of Fish-
erRF for single touch supervision on a mirror example.
We leverage a pretrained Splat from the Touch-GS mirror
and perform FisherRF depth on a list of candidate touches
every 100 steps until we have added 10 touches. The result
is shown in Fig 7, where more touches are selected in the

Object Method PSNR↑ SSIM↑ LPIPS↓

Random 12.25 0.51 0.54
Real-world FisherRF RGB 12.49 0.52 0.56
Bunny FisherRF Combined 12.43 0.52 0.56

FisherRF Depth 13.09 0.53 0.53
Toy Car Random 11.40 0.45 0.55

Our Method 11.75 0.47 0.52
Mirror Random 14.66 0.72 0.50

Our Method 16.50 0.76 0.41
Prism Random 16.63 0.73 0.41

Our Method 16.77 0.74 0.39
Bunny/Ridged Object Random 17.24 0.75 0.39

Our Method 17.47 0.76 0.38

TABLE VI: FisherRF Online Real-World Experiment

Fig. 7: FisherRF Guided Touch Selection

hole-like areas in the mirrors, which is due to the the holes
having a higher Hessian with respect to depth.

V. CONCLUSION

In this work, we demonstrate the usefulness of few-shot
active view and touch selection for robot manipulators using
3DGS. First, we utilize SAM2 and monocular depth models
to generate high quality depth map as guidance for Gaussian
Splatting training. Second, we use FisherRF to actively select
both camera and touch poses and progressively reconstruct
the object surface. Third, we fuse tactile data into 3DGS to
represent a challenging object. Future work entails integrat-
ing our pipeline with both vision and touch online in order
to reconstruct a digital twin.
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