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Physical human-robot interaction is slowly transitioning to more human-centric environ-

ments, where robots will need to work with and around humans, instead of the other way around.

However, prior methods are limited in that they struggle with effective, close-proximity interaction.

Distributed, whole body sensing has recently emerged as a strong solution for this problem; such

sensing enables comprehensive coverage of the robot’s nearby space. However, current solutions lack

a certain degree a flexibility and modularity that is necessary for eventual real-world development.

This thesis first addresses the lack of a “plug and play” system with the presentation of a detailed

framework for calibrating and setting up the sensor units. The proposed framework is accurate

and we demonstrate this in simulation and real-life, followed with an obstacle avoidance example

that demonstrates the system’s capabilities. Next, this work addresses the lack of a transition

between avoidance and contact in close-proximity interactions with a new framework for implicit

contact anticipation. This framework, which builds on top of the previous one, is also evaluated in

a variety of experimental scenarios to showcase its capabilities. Altogether, this work is a strong

step forwards to close-proximity human robot interaction, and will hopefully push research closer

to true human robot collaboration.
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Chapter 1

Introduction

While robotics is increasingly gaining attention among the general public and media – with

people frequently commenting on the soon, incoming “robotic takeover” – the current state-of-the-

art research is far behind that current expectation. Even though robotics have been successfully

deployed at large scales in industrial and manufacturing environments, the caveat is that the en-

vironments must be tailored towards safe robot operation. This means that people currently need

to focus on giving the robot ample space to easily operate, as well as ensuring that there will be

minimal changes in the robot’s operating space. Indeed, while these robots have been commercially

successful in the manufacturing setting, many assumptions can be made so that the robot does not

need to react to external disturbances in its environment. As a result, the long touted promise

that robotics will soon be in close contact and collaboration with humans has still not been met,

given the current capabilities. In short, at present, humans have to work around the limitations of

robots, instead of the other way around, where robots should work around and with humans.

As the shift from manufacturing and laboratory environments to areas conducive to interac-

tion occurs, it becomes essential that robots have the capabilities for close and extended interac-

tions [1]. By themselves, current collaborative robotic platforms are practically unaware of their

surroundings and how to react to unpredictable situations. As robots begin to share areas with

humans, whether it be work or living, strong perception capabilities are of the utmost importance.

Recent research on modern robot manipulators has demonstrated a variety of dynamic be-

haviors when humans enter a robot’s workspace; however, the proposed perception methods and
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algorithms do not achieve the eventual goal of close proximity interaction. This additionally

goes against another important goal of physical human-robot interaction: to approach the paradigm

of human-human interaction. In human-human environments, such as cooking, construction, and

medical scenarios, close-proximity collaboration is essential for successful completion of complex

tasks. Without the ability for these close-proximity interactions, the rate at which robots will be

able to become more present in environments with more humans is reduced. In all, research should

specifically target pushing human-robot interaction to closely resemble human-human interaction,

which is obviously already omnipresent in people’s lives.

Accordingly, the first step to achieving close proximity interaction is accurate and fast nearby-

space perception of the robot. However, collaborative robots designed to work with humans fre-

quently resort to either external, sparse, and high resolution sensing (such as the work in [2]),

which has a low bandwidth and suffers from the occlusion problem, or low-resolution, onboard

contact-based sensors (e.g., torque sensing on the joints as in [3] or on the robot’s end-effector),

which do not take the robot’s whole body into account and cannot sense objects and humans in

its nearby space. From the above, it can be seen that whole body awareness is the most suitable

solution; with recent works performing research in the area ( [4–9]).

With respect to achieving whole body awareness, distributed, onboard sensor units are a

strong candidate; they have the potential to enable a information-rich perception of the robot’s

nearby space with high bandwidth. Currently, existing sensor (skin) units require a considerable

amount of time to setup and deploy the hardware on a real platform, are tailored for specific robotic

platforms, and require manual, time-consuming calibration. With these three issues, the net result

is limiting research in the field, and slowing down real-world deployment.

Overall, the core contribution of this thesis is that distributed, whole-body sensing

enables rich, complex interactions with humans in the nearby space of a robot manipulator.

The first major contribution of this thesis consists of the creation of a comprehensive frame-

work, calibration, and robot control for close interactions with humans. This unified framework

first proposes an accurate and self-contained kinematic calibration algorithm that locates the six-
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dimensional pose (position and orientation) of the sensor units on the robot’s body, only relying on

accelerometer data from the novel sensor units that are self-contained, self-powered, and capable of

close-proximity sensing. The proposed method is validated in simulation before being deployed suc-

cessfully in an avoidance controller. The combination of a novel hardware design, a sub-centimeter

calibration method, and strong first application demonstrate a plug-and-play that can be easily

setup and deployed on real robot platforms.

The second major contribution of this thesis entails building on top of the aforementioned

framework to use the calibrated sensor units to enable new collaborative behavior. We first empha-

size how in human-robot interaction (HRI), resorting to pure collision avoidance is not completely

sufficient, as contact is frequently inevitable and encouraged. Allowing avoidance, contact, and a

strong transition in between the two is critical for widening the spectrum of capabilities of truly

close physical human robot interaction. Motivated by this, we posit that the previous framework’s

ability of close-proximity operation allows us to bridge the gap between avoidance and contact.

This new ability, which we refer to as contact anticipation, reduces the force to trigger a reactive

behavior, in turn leading to softer and safer interactions between robots and humans.

To enable this behavior, we first formulate the problem as a quadratic programming optimiza-

tion problem that allows for collision avoidance with both reduced velocities and relaxed avoidance

constraints to better encourage contact. Next, a novel contact detection and reaction scheme is

devised that registers anomalies in noisy external force data and leverages the sensor units’ envi-

ronmental information to become sensitive to touch. This new contact anticipation framework is

experimentally evaluated on a real robot in a handful of scenarios, demonstrating the multiple ca-

pabilities and advantages of our method. Altogether, our results demonstrate that onboard sensing

and dynamic contact thresholding allow a smooth transition between avoidance and contact.

Thus, to summarize, the two real-world system/frameworks introduce a novel sensor unit and

its applications which will bring us one step closer to ubiquitous and safe human–robot interactions.
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1.1 Contributed Work

The work described in this thesis has resulted in the following Under-Review publications. As

a result, most of the figures (and corresponding captions) of these works have been reproduced here

in their entirety. Also, due to the extensive involvement of the author in writing both papers, the

contents and structure of this thesis and the two works are similar, but with extensive elaboration on

numerous important points in this thesis from the below works. The thesis is accordingly organized

by detailing the work from the first paper, and then detailing the work from the second paper.

Kandai Watanabe, Matthew Strong, Mary West, Caleb Escobedo, Ander Aramburu, Kr-

ishna Chaitanya, Alessandro Roncone. Self-Contained Kinematic Calibration of a Novel Whole-

Body Artificial Skin for Collaborative Robotics, International Conference on Robotics and Systems

2021. Under Review.

Caleb Escobedo, Matthew Strong, Mary West, Ander Aramburu, Alessandro Roncone.

Bridging the Gap Between Collision Avoidance and Contact in Robot Manipulators with Onboard

Sensing, International Conference on Robotics and Systems 2021. Under Review.



Chapter 2

Plug and Play Robotic Skin: Related Work

This literature review focuses on the relevant subfields pertaining towards the first core

contribution of this thesis, which is the plug-and-play robotic skin system.

2.1 Kinematic Calibration

Our novel custom built sensor units, which are introduced in detail in the next chapter,

first require accurate calibration of the sensor units along any point on a robot’s body. The

issue of kinematic calibration of a robot’s kinematic chain is a well-studied problem for robots,

both industrial and collaborative. Accurate and precise modeling of a chain directly impacts the

robot’s performance and operation. This problem has been very well-studied in previous decades,

and open-loop and closed-loop approaches have arisen from this research ( [10] provides a more

detailed overview of these concepts) as well. However, an important distinction needs to be made

from this work in that the purpose of a robot’s kinematic calibration is to calibrate its kinematic

chain, which improves on an already available kinematic model. This improves convergence of

optimization (when the available kinematic model is used as a prior) and the overall accuracy

of the results. Moreover, kinematic calibration of a robot is the exact same for the same robot

model (e.g., the Franka Panda or Sawyer robot arm). In contrast, this work is concerned with the

kinematic calibration of the artificial sensor units that can be placed arbitrarily on the surface of

a robot.

Also of relevance to this work is the research performed of robotic kinematic calibration
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based on IMU data (which is the type of data that this work relies on for calibration) in [11], which

slightly overlaps with human pose estimation for motion capture ( [12], [13]). However, in addition

to addressing completely different problems (the calibration of a robot’s or human’s already existing

kinematic chain vs. the calibration of an arbitrarily placed sensor unit), these prior approaches

frequently rely on sensor fusion techniques that bring together information from multiple different

sensors, such as magnetometers, GPS, bio-mechanical modeling, etc. Our approach only relies on

accelerometer data.

2.2 Artificial Skin/Sensor Units for Robotics

Recently, there has been a concentrated and increased effort to improve technologies in dis-

tributed and artificial sensing on robotic manipulators. A great deal of work in this area focuses

on pressure and touch onboard sensors (which often provide manipulation and gripping tasks with

more fine-grained sensing, see [14–16] for more information). At the same time, the idea of covering

a robot’s whole body with distributed sensing is gaining traction ( [6–8,17]).

The developed sensor units for this work can be distributed over a whole robot’s body and,

unlike, the touch-based methods, are focused on the perception of the nearby space of the robot.

These sensor units are also self-contained, and their low cost makes them a significantly better

option than imu-based or multi-sensor-based capture systems, such as Xsens, which costs thousands

of dollars.

2.3 Kinematic Calibration of Artificial Skins

Accurate and precise kinematic calibration of robotic artificial skins is crucial for a robot to

accurately detect humans and objects near any part of the robot’s body. Thus, calculating the

exact pose of a skin unit relative to the robot’s kinematic model is of utmost importance.

To reiterate, this section is distinctly different from Kinematic Calibration in that this sec-

tion focuses on methods for calibrating a sensor unit on a robot, not calibrating the robot itself.

Only recently has kinematic calibration of a skin, which was originally manually performed, been
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started to be automated without the need of a human operator. A fairly recent approach is that

of [18], which proposed an automatic calibration method in which the iCub humanoid robot [8]

performed “self-touch” actions on a custom robotic skin, which both allowed for the calculation of

the 3-D position of the end-effector and the Denavit-Hartenberg (DH) parameters ( [19]). While

this optimization-based method cleverly lets the robot close its kinematic chain by touching its own

body, and was autonomous and not reliant on external measurements, the iCub’s self-touch capa-

bilities are not possible on collaborative robotic manipulators. The reduced Degrees of Freedom

(DoF) on such manipulators limit their manipulability.

However, of more importance is the self-calibration method introduced in [20]. This proposed

method uses its own custom built skin units for calibration. Their method both estimates the

kinematic chain of the robot and each skin units’ DH parameters by 1). collecting IMU data

from each skin unit in multiple poses, oscillating certain joints of the robot in the pose to collect

dynamic data to better improve parameter estimation, and 2). formulating the calculation of

the DH parameters as an optimization problem. Together, [20] is able to achieve a generally

≤ 0.1 radians or meters difference between the ground truth parameters; however, the results were

sub-optimal in simulation (over 10 centimeters) and not verified on a real robot platform for its

effectiveness in meaningful avoidance or collaboration scenarios. The presented method also only

tested one pose per each skin unit, not demonstrating whether their algorithm worked in a variety

of poses.

To emphasize, the first core contribution of this thesis is not solely to create a kinematic

calibration skin algorithm to improve upon [20]; it is instead to introduce an accurate calibration

algorithm for a system that will enable safe and close-contact human-robot interaction. However,

the work in [20] serves as the reference work from which we build off of.



Chapter 3

A Framework for a Plug-And-Play Robotic Skin

In this section, we detail the relevant preliminaries and methods pertaining to the first pro-

posed framework.

3.1 Novel Artificial Skin

In this thesis, we define a skin/sensor unit (SU) as the most minimal hardware element

required to perform the autonomous kinematic calibration and nearby space perception. An exam-

ple of the SU can be seen in Figure 3.1. It consists of an inertial measurement unit (IMU) and a

proximity sensor. Note that future mentions of sensor unit or skin unit are referring to the same

unit.

The SU consists of off-the-shelf sensors, with a total overall cost of around $36, as well as low

power consumption (an operational range of around 110 to 160 mA), which allows for a completely

self-contained module to ease setup and deployment. The SUs used in this work operate with

external but attached 100 mAh batteries, and have been able to operate continuously for up to 10

hours.

3.1.1 Sensor Selection and Specifications

The SU prototype, which measures at 33 × 36mm (a full picture can be seen in Figure 3.1)

is a stand-alone design with a WiFi-enabled ESP8266 microcontroller, a USB-to-UART bridge for

programming, the ability for hardware debugging, and system status LEDs. Furthermore, the SU
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Figure 3.1: The sensor unit used for the work in this thesis.

Figure 3.2: The Franka Emika Panda robot autonomously avoiding a human with the wireless skin
units.

is powered by a Lithium-Polymer battery, and was fabricated on 0.15mm Kingboard copper clad

laminate 175TgFR4 substrate. The selected IMU was an LSM6DS3 iNEMO, which includes an

acceleration range of ±2/ ± 4/ ± 8/ ± 16g, and an angular rate range of ±125/ ± 245/ ± 500/ ±

1000/±2000 degrees per second. The VL53L1X time-of-flight (ToF) sensor serves as the proximity

sensor, which includes a range of up to 4 meters, a field of view of 27◦, ranging frequency of 50

Hz, and the I2C protocol. With the high bandwidth provided with both sensors, we were able to

mount the SUs on the robot (as seen in Figure 3.2), and receive IMU data at a rate of 100Hz and

proximity sensor data at a rate of 50Hz.
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3.2 Accelerometer-Based Kinematic Calibration of Skin Units

Kinematic calibration of the skin units is the process of precisely estimating the kinematic

structure of where the skin units are in relation to the robot’s kinematic chain. The goal of SU

kinematic calibration is to compute the 6D pose (in our case, a 3D position and 3D orientation)

of each SU mounted on the robot so that its location is precisely known with respect to the

robot’s kinematic chain and frames of reference. With an accurately calibrated pose, the robot can

make better use of proximity data to inform control algorithms. Later, in the Obstacle Avoidance

Controller Example section, we utilize accurately-calibrated SU information to demonstrate its

effectiveness via an obstacle avoidance example, in which proximity sensor data can detect objects

at a distance and alter the robot’s trajectory accordingly to prevent unwanted collisions.

The work in this thesis formalizes the problem of estimating an SU’s pose along a robot

manipulator via the Denavit-Hartenberg convention [19]. The novel kinematic calibration algorithm

is solely based on accelerometer data, as initial testing indicated that angular velocity readings (from

the gyroscope) were significantly noisy with drift, and the inclusion of such data did not improve

calibration performance.

To achieve this, the three-axis linear acceleration data, (ax, ay, az), is collected from each SU

in multiple robot configurations. We then optimize the IMU data to fit the DH parameters of each

SU, allowing for the computation of each SU’s pose.

Figure 3.3 shows a high-level overview of the proposed artificial SU calibration algorithm.

The following sections explain each step of the calibration in extensive detail.

3.2.1 Data Collection and Generation for Calibration

The first step of the algorithm begins with data collection. Multiple sensor readings are used

in the optimization algorithm, which is detailed in Section 3.2.3.

Data collection consists of two parts: the first; static pose data collection, and the second,

dynamic pose data collection. Static pose collection collects accelerometer readings in multiple
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Data Collection

Kinematic Chain Modeling

Parameter Optimization

Save DataDynamic PoseStatic Pose

Actuating Joint

Figure 3.3: Overview of the kinematic calibration algorithm: 1) collect IMU data k~ams and k~amd at
static and dynamic poses for all SUk, ∀k = {1, · · · ,K}, where K is the number of SUs; 2) define
a kinematic model from joint jn to SUk expressed as nTk that is parameterized by Φk; 3) optimize
the parameters Φk by minimizing the static and dynamic error functions Es and Ed for each SUk.
qn and q̇n represent joint angle and velocity of jn.

joint configurations while the robot is stationary. This serves as a strong baseline to isolate and

compensate for static forces that act on the robot, such as gravity. The static pose data serves

as one strong source to optimize the data, and we can collect data in each static pose for a few

seconds. The dynamic pose step is tasked with collecting data as each individual joint oscillates in

a sinusoidal pattern. More specifically, we achieve the oscillations via actuating each joint p with a

low-level joint velocity control scheme, defined by q̇p = A sin(2πft), where f is the frequency, t is

the time, q̇p is the joint velocity of a single joint, and A is the amplitude of the pattern.

The selection of this joint velocity pattern allows to easily compute how far, fast, and how

much acceleration each joint will undergo; additionally, selecting higher acceleration creates a larger

signal-to-noise ratio, which helps the optimizer distinguish the acceleration data from the sensors’

noise.

Static and dynamic data collection can be performed as follows: for P poses, the robot first

moves to a pose and remains stationary (for a few seconds) in order to collect a sufficient amount
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Figure 3.4: Schematic depiction of SUs mounted on a robotic arm (left) with each kinematic element
of the robot labeled. The zoomed-in image on the right illustrates how the SU poses are estimated
through DH parameters of the joint connecting to the previous link: the transformation from the n-
th joint to the k-th SU can be computed via an intermediate “virtual joint” vk located perpendicular
to both the joint’s and the SU’s reference frames. The axes depict the three coordinate systems:
joint n, SU k, and corresponding virtual joint vk.

of data, then, each of the robot’s joints oscillates in the motion described above (also for a few

seconds), one by one. Only after this can the robot move onto the next pose. Together, the data

from static data pose collection and dynamic data pose collection is incorporated to perform the

optimization detailed in Section 3.2.3). The data collection only needs to be performed once for

each configuration of SUs, and can be saved for later use.

3.2.2 Kinematic Model Considerations

Before running the next step of optimization, which is detailed in Section 3.2.3, it is crucial

to explicitly define how to model the kinematic structure of the robot and how each skin unit

is connected to the robot. Thus, we employ the modified Denavit-Hartenberg (DH) parameters

(detailed in [21]) for modeling the robot’s kinematic chain (which we are provided with) and skin

unit parameters. In general, the DH notation is convenient for this work because it allows to

express the relative poses of the kinematic elements on a robot’s kinematic chain with four elements

instead of six, further reducing the dimensionality of the optimization problem. This reduction can

be achieved with the majority of robot arms that use prismatic and revolute joints, but this is not

possible with skin units, which can be placed anywhere on a robot’s links.
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The transformation matrix that is constructed from modified DH parameters is:



cos(θ) − sin(θ) 0 a

sin(θ) · cos(α) cos(θ) · cos(α) − sin(α) −d · sin(α)

sin(θ) · sin(α) cos(θ) · sin(α) cos(α) d · cos(α)

0 0 0 1


, (3.1)

where θ, α, a, and d describe the DH parameters.

To adhere to the DH convention, a “virtual joint” is located between joint n and SU k,

which can be seen in Figure 3.4. This then allows to estimate the 6 degree-of-freedom (DoF)

transformation matrix, nTk, between the nth joint’s reference frame and the kth SU’s frame to be

broken up into the estimation of two, DH-compatible, 4-DoF matrices:

nTk =
[ nRk

n~rk

0 1

]
= nTvk

[Φ (vk)] · vkTk [Φ (SUk)] , (3.2)

where nRk and n~rk are the rotational and translational components of nTk, and Φk =

[Φ (vk) ,Φ (SUk)] are the DH-compatible parameters to be estimated.

nTvk , the transformation matrix which describes the transformation from joint n to virtual

joint vk, is parameterized by Φ (vk) = (dvk , θvk , 0, 0) for virtual joint vk, and vkTk, the transformation

from virtual joint vk to SU k, is parameterized by Φ (SUk) = (dSUk
, θSUk

, aSUk
, αSUk

) for the

corresponding SUk. The above formulation of the composite transformation matrix, nTk, still

represents a 6-DoF problem, allowing for any SU pose to be represented relative to its corresponding

joint n with 6 parameters.

3.2.3 Parameter Optimization

The last step of calibration regards parameter optimization. This is tasked with properly

calibrating the kinematic model detailed in Section 3.2.2 along with the data collection section

(Section 3.2.1). Initially, the DH parameters for all SUs are randomly initialized within a given

range (For specific information of the values of these ranges, please refer to Chapter 4). At the
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end of each iteration step, the ground truth accelerations are estimated from the kinematic model

as detailed in the following section. Next, a global optimization algorithm is used to estimate the

DH parameters by minimizing the error between the actual and predicted SU accelerations. The

optimization process continues until a stopping criteria; that is, when the change in the estimated

DH parameters from one step to another is sufficiently small.

The details are now provided.

3.2.3.1 Acceleration Estimation

The acceleration k~ak exerted on SUk in its frame of reference (FoR) k can be estimated via the

Newtonian Equation of motion for a rotating coordinate system. To elaborate, the total acceleration

can be split up into three components: gravitational acceleration ~gk, centripetal acceleration ~acen,k

and tangential acceleration ~atan,k. These three components can be formalized as follows:

k~ak(Φk, qn, q̇n, q̈n) = kRn(Φk, q) ·
(
~gk + ~acen,k + ~atan,k

)
(3.3)

~acen,k(Φk, qn, q̇n) = ~̇qn ×
(
~̇qn × n~rk(Φk, q)

)
(3.4)

~atan,k(Φk, qn, q̈n) = ~̈qn × n~rk(Φk, q) (3.5)

With respect to Eq. (3.4), the centripetal acceleration ~acen,k consists of the joint angular velocity

~̇qn = [0, 0, q̇n] (which can be calculated during the data collection process), and the position vector

n~rk, which represents the translational component of nTk in Eq. (3.2). Since these terms are all

defined in the nth rotating joint’s reference frame, they have to be rotated from reference frame

jn to SUk through kRn. Note that the full acceleration vector calculation is parameterized by Φk,

which are the DH parameters that will be optimized.

The tangential part of joint motion on acceleration readings of the SUs requires knowing the

joint angular acceleration; however, most robot manipulators do not easily provide this informa-

tion. Thus, computation of the angular acceleration requires a numerical estimation. Conventional

methods (such as the method in [20]) resort to using the second derivative of the position vector, or
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Figure 3.5: Illustration of the numerically computed tangential accelerations for joint n in its
respective FoR. The plot on the right shows the accelerations computed by taking the second
derivative of the position vectors (the red dots on the left). The accelerations include not only a
tangential acceleration but also an unnecessary centripetal acceleration.

n~rk, to estimate the SU’s acceleration. However, this differentiation does not include gravity and

incorrectly includes an extra centripetal force from the SU moving along a rotating joint, which is

detailed in Fig. 3.5.

The inclusion of this additional centripetal force is not only redundant, but it also is a

detriment on optimization performance – thus, we remove the non-tangential forces by employing

the equation in Eq. (3.6), then followed by Eq. (3.7):

~atan,k = ~etan ·
~r(h) + ~r(−h)− 2 · ~r(0)

h2
(3.6)

k~atan,k = kRn · ~atan,k (3.7)

From the equations above, ~r(h) is a parameterization of the position vector n~rk as a function

of discrete time h = 0.001, and ~etan is an unit vector in the tangential direction, where we only

take the tangential direction unit vector in order to avoid the unecessary centripetal acceleration.
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3.2.3.2 Error Functions

For each SUk attached to a joint n, we can optimize its DH parameters, Φk, by decomposing

the objective function into two separate minimization tasks: namely, we minimize two distinct

error functions; first, the static acceleration error Es and the dynamic acceleration error Ed. For

each static pose p (from static pose data collection), the static error function Es only brings with

it relevant rotational information for the DH parameters because the static data collection and

data solely depend on the gravitational acceleration (centripetal and tangential acceleration of the

SUs is 0); thus, only the rotational DH parameters (included in nRk(Φk)) can be estimated from

the static data. It is important to note that there is a misalignment in coordinate frames – the

measured acceleration of SUk
k~amk,p is defined in its own reference frame k, but the gravity vector

b~g is defined in the base frame. Thus, the acceleration vector must be converted into the robot’s

base frame using the rotational matrix bRn as computed from forward kinematics. The rotation

matrix nRk also rotates the acceleration of SUk into the joint n’s reference frame before rotating

it into the base frame.

The static acceleration error is then defined as the L2 norm between the measured acceleration

and the gravity vector:

Es(k) =
1

P

P∑
p=1

∣∣∣bRn · nRk(Φk) · k~amk,p − b~g
∣∣∣2, (3.8)

where P represents the total number of static poses collected (user-selected). Conversely, the dy-

namic acceleration error Ed,k is composed of both rotational and translational information. How-

ever, the dynamic acceleration error function is not used to optimize the rotational DH parameters

because its data is noisier than the static data, and the static data is specifically built for optimiza-

tion of the rotational DH parameters. Upon optimizing nRk(Φk) from Eq. (3.8) (these rotational

parameters are frozen and not optimized later), the translational component of the optimization

problem can be estimated via the L2 norm between the measured acceleration k~amk,d,p and the

ground truth estimated from kinematics and current DH parameters k~ak,d,p(Φk), and expressed in
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the SU’s reference frame:

Ed(k) =
1

P

P∑
p=1

n∑
d>0,

d=n−2

∣∣∣k~amk,d,p − k~ak,d,p(Φk)
∣∣∣2, (3.9)

where d is the sole joint that is actuated during the dynamic data collection process to

exert some acceleration on each SU. At most three previous joints before the nth joint are used

to compute the above error function. While the SUs located on earlier links of the robot cannot

rely on as much information as ones located on later links, we still notice strong results across the

board. Additionally, k~ak,d,p can be computed from Eq. (3.3) for joint d and in pose p. From here,

the optimization procedure is repeated for all SUs. After completion, the DH parameters for each

SU are saved for later use.



Chapter 4

A Plug-And-Play Robotic Skin: Experimental Design, Results, and Discussion

To effectively validate the proposed method, a comprehensive, quantitative evaluation is

first conducted in simulation through the Robot Operating System (ROS [22]) and the Gazebo

simulation ( [23]). Using ROS and Gazebo makes it easy to create complex robotic algorithms and

quick prototyping and testing.

Following this, we deploy our system on a real-world Franka Emika Panda collaborative robot

(see Fig. 4.1), in which we show the effectiveness of an obstacle avoidance control example. Our

experiments demonstrate an improvement over the state-of-the-art [20] and shows the ability for

accurate kinematic calibration on 7-DoF collaborative platforms in simulation and the real-world.

Next, the parameters and other specific details of the experiment are described as to improve

the reproducibility of the presented work. The corresponding code and data are available at the

associated GitHub repository1 .

Because the previous algorithm proposed in [20] was slightly incorrect, we modified it by

including the acceleration due to gravity to adhere to Eq. (3.3). Thus, we instead display the results

from Mittendorfer’s method with this modification: the following results display this modified

version, which is called modified Mittendorfer’s method (mMM). The original version was orders

of magnitude worse than ours, and comparing our method to mMM is more fair.

As with the comparison method in [20], the robot’s base frame serves as the starting point for

calibration. The robot base frame is set to align with the world reference frame for simplicity. In

1 The GitHub repository(ies) will be published at the IROS 2021 camera ready stage, or upon inquiry to
mast4878@colorado.edu.
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Figure 4.1: Comparison between estimated SU poses (left) and ground truth poses (right) on a
Franka Emika Panda robot arm. The grey boxes represent the estimated SU with x (red), y
(green), z (blue) axes respectively.

Table 4.1: Comparison of the Average L2 Norm positional error [cm] and absolute distance in
quaternion space (with units multiplied by 10−1 for reasons of space) of our method (OM) against
the modified Mittendorfer method (mMM). 4 different sets of poses are tested and optimization is
run 10 times per set; average and standard deviations of these 40 trials are below.

SU1 SU2 SU3 SU4 SU5 SU6 Average

Positional OM 0.28± 0.15 0.39± 0.15 0.78± 0.39 1.15± 0.88 0.80± 0.36 0.25± 0.095 0.66± 0.60
Error [cm] mMM 5.3± 7.1 2.6± 0.23 5.4± 4.9 9.5± 9.0 1.4± 0.91 2.3± 2.4 4.4± 5.9

Quaternion OM 0.10± 0.058 0.054± 0.041 0.023± 0.012 0.019± 0.013 0.021± 0.023 0.045± 0.053 0.044± 0.059
Distance mMM 5.5± 5.9 0.16± 0.11 3.6± 6.1 0.057± 0.022 0.044± 0.015 2.5± 4.3 2.0± 4.4
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Table 4.2: True and Estimated DH Parameters of one of the four SU configuration sets we tested.

j1 to SU1 j2 to SU2 j3 to SU3 j4 to SU4 j5 to SU5 j6 to SU6

true est true est true est true est true est true est

θSU 1.571 1.571 0.000 -0.014 -1.571 -1.571 3.141 3.141 -1.571 -1.571 1.571 1.565

dSU 0.060 0.060 -0.080 -0.076 0.080 0.085 -0.100 -0.007 0.030 0.030 0.000 0.001

aSU -1.571 -1.545 0.000 -0.001 1.571 1.567 3.141 3.141 1.571 1.541 -1.571 -1.570

αSU 0.060 0.062 0.050 0.053 0.060 0.060 0.100 0.142 0.050 0.048 0.050 0.049

θv 0.000 0.001 0.000 0.000 0.000 0.001 0.000 -0.001 0.000 -0.001 0.000 -0.001

dv 1.571 1.583 1.571 1.568 1.571 1.570 1.571 1.565 1.571 1.570 1.571 1.571

the simulation and real world scenarios, six SUs are mounted perpendicularly to the surface of the

each robot link; each link has one SU on it except the first link. A SU cannot be placed on the first

link because there are an infinite number of solutions with the same acceleration values. This is

because the values ~̇q, ~̈q, and ~r are equal along the first link. We were able to use the native Gazebo

IMU plugin to simulate IMU behaviors. Before optimization, the DH parameters of every SU is

initialized randomly within the following bounds: θv ∈ [−π;π], dv ∈ [−1; 1], θSU ∈ [−π;π], dSU ∈

[−1; 1], aSU ∈ [0; 1], αSU ∈ [−π;π].

The data collection process (including both static pose and dynamic pose collection) is per-

formed only once in both simulation and the real world. For simulation, P = 16 poses were

collected, with the total time taking under 20 minutes.

We utilized a joint velocity controller to oscillate the robot at 2rad/s, and a joint position

controller to move from pose to pose. The IMU messages from the SU are published and received

at 100Hz, while the controller operates at a rate of also 100Hz.

As the robot goes through each pose, upon reaching each pose, two seconds of rest were set

to prevent outliers and ensure the robot has ample time to reach the pose. We use a randomized

global optimization algorithm of MLSL LDS ( [24]), along with a derivative-free local optimizer

(LN NEWUOA, [25]) of the Python NLopt library [26]. Even though we initialize the DH pa-

rameters of each SU within a constrained set of boundaries, we select NEWUOA unconstrained

optimization to allow for better exploration of the DH parameter search space – in all, there are 36

parameters due to each one of the six SUs being parameterized by six values. Due to the nature of



21

how we set up the parameters, there are actually multiple solutions for each SU’s DH parameters,

so allowing unconstrained methods enables a more methodical exploration of the search space and

avoiding local minima.

The optimization for the static acceleration error is terminated once the error is below a

threshold of 0.01, or if the parameter difference in between consecutive iterations is less than

0.001. The optimization for the dynamic acceleration error is also terminated based on the same

conditions. However, a distinction needs to be made that the termination of the static acceleration

error optimization simply allows the optimizer to optimize the positional related parameters – they

are not different estimation problems. Both data collection and optimization were performed on a

Lenovo Thinkpad X1 Extreme, 2nd Generation, with 12 Intel i7-9750H CPUs and a GeForce GTX

1650.

4.1 Results and Discussion

4.1.1 Simulation Experiments

In simulation, we evaluate the performance of our algorithm based on the average L2 Eu-

clidean distance and quaternion distance over every SU. Furthermore, to test the robustness of

our algorithm, we varied the parameters of our experiment by doing the following: i) We tested 4

different sets of SU configurations along the robot’s body. Each SU configuration is different from

the others; thus, we have tested 24 different SU poses along the robot. ii) We optimized the SU

configurations 10 times per set. Additional tests performed did not seem to alter the averages and

variances of our results. The mean and standard deviation of the calibration on the total of 40

trials are shown in Table 4.1, and estimated DH parameter values are displayed in Table 4.2.

As elaborated in the experiment design section, we elected to not compare against the original

method in [20] due to the incorrect modeling of acceleration and poor performance – instead, we

created the modified version (mMM) for a more fair comparison. Based on the table in Table 4.1, the

modified version of Mittendorfer’s method (mMM) had an average error of 4.4cm and a significantly
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high variance of ±5.9cm. On the other hand, our method (OM) has an average error of under

1cm at 0.66cm for all of the SU placements, which is a six-fold improvement, demonstrating the

correctness of our method. Indeed, similar can be stated for the comparison between the two

methods with respect to orientation error. Along with the significant gain in accuracy, separating

the optimization problem into two parts (but not two estimation problems) sped up the separated

problem (433 seconds) with respect to the original problem (1797 seconds).

4.1.2 Real World Experiments

To test the effectiveness of the algorithm in a real world setting, we validate our method on a

Franka Panda collaborative robot arm. The work in [20] did not perform real-world calibration and

was exclusively tested in simulation. Additionally, we expect slightly worse calibration performance

due to the introduction of additional layers of complexity: for example, possible time delays in the

robot network that caused the collection of slightly misaligned data, added sensor noise and bias

in the IMUs, and hardware limitations of the platform.

However, IMU data from the SUs can still be retrieved at a rate of 100Hz and recorded for

3 seconds at each pose. The resting time given for a robot to reach a pose is lengthened to 10

seconds. We also modified the oscillation magnitude to be 2.0 and frequencies of each joint to 0.75,

0.25, 0.35, 0.55, 0.75, 0.9, and 0.9Hz. While these reduced frequencies restrained the displacements

of the robot, they still allow for reasonably high accelerations. The data collection was conducted

on a computer outfitted with a real-time kernel and took less than 30 minutes to allow ample time

for the robot to move from one pose to another. For the real world experiments, P = 12 different

poses were collected.

A qualitative comparison of the estimated vs. actual SU poses can be seen in Fig. 4.1. The

grey boxes in the simulation represent the estimated SUs, and the real world pictures are the actual,

ground truth SU placements. It is clear that the estimation of the SU poses, for the most part,

are highly similar between real life and simulation. After running calibration on the real robot, the

average position error for all of the SUs was approximately 5.1cm and the average orientation error



23

Figure 4.2: Trajectory redirection for obstacle avoidance. Right: a human approaches a robot with
calibrated skin units; their accurate pose estimation allows the robot to precisely perceive the person
from a distance. Bottom-Right: real-time visualization of the robot and obstacles (shown as green
spheres) as sensed by the proximity sensors placed on the calibrated SUs; only below-threshold
signals (arm and end-effector SU) affect the robot’s motion. Left: combined graph of proximity
data over time vs. the robot’s end effector error along a circular trajectory. The two shaded areas
indicate intervals when the human approaches a skin unit (below the avoidance threshold), causing
only a temporary perturbation in the error. The perturbation stays low in the orange colored area
(arm proximity activation) compared to the green area (end effector proximity activation) because
the robot leverages the redundancy afforded by its kinematic chain to avoid colliding with the
person while concurrently satisfying its main task objective.
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was 0.12, whereas mMM had an average position error of 9.2cm and 0.43 error for orientation. The

results are not shown, but the average positional error for the original Mittendorfer’s method was

up to 90cm, an order of magnitude worse than our work.

4.1.3 Obstacle Avoidance Controller Example

Immediately after calibration, the estimated SU poses can be used for an obstacle avoidance

controller, which can be seen in Fig. 4.2. To showcase the abilities of the calibrated system, we

implemented a Cartesian velocity obstacle avoidance controller similar to [27], where proximity data

is leveraged to maintain the desired end-effector trajectory and avoid obstacles. In the example in

the Fig. 4.2, the robot follows a continuous, circular trajectory in the task space, and proximity

data is published (and received) at a rate of 50Hz.

The bottom right image in Fig. 4.2 displays a visualization (using Rviz) of the robot model

and obstacles detected in its nearby space; if any one or more obstacles are sensed within 1m of

a SU (shown by the dashed line on the graph in Fig. 4.2), then the robot will take corrective

actions to avoid the object. The selection of 1m as a threshold for detection is arbitrary as to

guarantee safety in the presence of humans; however, this value can be made dynamic to adjust

based on a variety of factors. The effectiveness of the control example is demonstrated from the

left graph(s) in Fig. 4.2. The orange and green shaded regions indicate a human approaching one

of the skin units. In the orange region, an arm SU detects a nearby object, and the change to the

end-effector Euclidean error is minimal because the manipulator is able to leverage its redundancy

to both stay on the desired trajectory and avoid the person. In the green region, the SU on the

EE detects a nearby object, and has to move more to avoid the person. Clearly, this avoidance

example demonstrates that the calibration accuracy in real life is sufficient for effective, nearby

space, close-proximity human robot interaction.



Chapter 5

Implicit Contact Anticipation via Distributed Whole-Body Sensing: Related

Work

This literature review concerns the second framework, which directly builds on top of the

calibrated sensor units to present an algorithm that addresses the “gray” area between avoidance

and contact.

5.1 Collision Avoidance

Contact is desired in physical Human-Robot Interaction (pHRI), but it has not been receiving

as much attention as avoidance algorithms. Even with a variety of sensing capabilities, work in safe

HRI has frequently focused on complete obstacle avoidance, which leads to zero contact between

a robot and human collaborator. The works of [28, 29] utilized designated safety zones around

the robot where the robot will slow down, or stop its movement entirely to avoid collisions at all

costs. However, these designated safety zones are more closely resembling to the current situation

of factory and manufacturing manipulators, where the robot always needs to be operating with an

imaginary barrier.

For dynamic environments, there have been dynamic avoidance methods ( [2,30,31]) that used

an externally-mounted 3D camera to inform avoidance behavior. However, while these methods

do not create a virtual safety barrier (that a human or object should not enter), their primary

objective is to still avoid an object, even if a human is attempting to make contact. In addition,

the external mounted systems of these works do not effectively cover the whole nearby-space of the
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robot. More approaches in [32,33] do address the idea of working in close proximity, but still rely on

external sensing and maintain a safe distance from a human whenever possible. While the presented

work in this thesis also has avoidance behaviors, the avoidance is developed in consideration with

the transition into contact. [34] did use onboard sensors, but still employed them to solely inform

avoidance. More recent works in [27,35] have formulated the avoidance problem as an optimization

problem via their onboard sensors. While these methods added more complex behaviors – they

allow for avoidance around objects instead of direct repulsion – no attempt is made for addressing

contact. In fact, none of the avoidance and even contact-based methods in the surveys of [1, 36]

tackle the transition from avoidance to contact, which is the one of the focal points of this thesis.

5.2 Collision Reaction and Detection

On the other side of the spectrum of human-robot interactions is contact; but is often referred

to as (the more negatively coined term) collision. This work has generally not integrated prior-

to-contact sensing and perception, and the contribution of collision-based works is at the moment

when and after contact is made, and not at any time before. Under this view, there is no notion of

“proactivity” and preparation for any sort of collision.

Indeed, works such as [37–42] focused on either collision detection, collision reaction, or a

combination of the two. While these methods’ post-collision behavior was highly varied, none of

them address how to perceive the nearby space before a potentially inevitable contact is made.

Because none of these works used methods for perception, their abilities are severely limited in

that at high speeds, where collision may be unsafe. Our work draws together the best of both

collision detection/reaction, as well as collision avoidance methods.

5.3 Collision Avoidance, Reaction and Detection

The work most similar to ours is [43], which proposes a comprehensive framework that com-

bines both collision avoidance with collision detection and reaction. However, the transition from

any sort of avoidance to collision is not addressed, and no mention is made of what happens right
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before collision is made. The collision avoidance method in their work is also based on [2], which

was developed purely for avoidance. The selected avoidance method of [2] was also limited in its

avoidance ability; it only has the ability to move directly away from an obstacle instead of more

intelligently maneuvering around it. Our framework enables more expressive avoidance behaviors,

but also develops both avoidance and contact with them mutually both in mind, allowing for strong

preliminary results.



Chapter 6

Implicit Contact Anticipation

In this section, we detail the relevant preliminaries and methods pertaining to the second

proposed framework, which leverages the capabilities of the previous framework to allow for phys-

ical human-robot interaction. The framework or system is designed to allow for a spectrum of

interactions to safely occur, including avoidance and soft contact.

We also detail each component of our framework, which, at a broad level, constitutes of

perception, avoidance, and contact detection and reaction as seen in the four sections of Fig. 6.1.

6.1 Development of Sensor Units

As previously mentioned, this contribution can only be fully realized via distributed, fast, and

whole-body sensing. We employ the self-contained, low-cost sensor units from one of the previous

sections (Novel Artificial Skin). For future mentions of proximity units in this section, we are

referring to the VL53L1X ToF sensor that is a component of the sensor unit. These sensor units

are identical to the ones presented in the previous framework.

6.2 Identification of Object Positions

With the capabilities of the aforementioned sensor units, objects can be perceived in the

robot’s close surroundings. To accomplish this, the sensor units are distributed along the robot

body.

Each SU’s proximity sensor is positioned so that its distance measurement is parallel to the
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Figure 6.1: Diagram of the presented framework for contact anticipation, detection, and reaction.
Each module represents a distinct interaction, from when an object enters the robot’s environment
to when the repulsive velocity becomes zero, and the initial trajectory is resumed.
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(a) Prior to Contact: A hu-
man enters the robot’s workspace,
and is sensed by onboard sensor
units, triggering both velocity scal-
ing and avoidance behavior.

(b) Contact: When a object
makes contact with the robot, we
measure the external force and de-
termine if it exceeds the dynami-
cally computed threshold.

(c) Post Contact: After con-
tact has been made and the force
threshold exceeded, a reactive be-
havior moves the robot in the di-
rection that the force was applied.

Figure 6.2: A human interacting with a robot to elicit reactive behavior while the robot is in
motion. This interaction is outlined in Section 7.1.3.

sensor unit’s z-axis. This allows for the computation for an object’s position h ∈ R3 as function of

the SU proximity reading dobs ∈ R:

h = O~rSUk
+ ORSUk

[
0 0 dobs

]T
, (6.1)

where SUk is the kth sensor unit, O~rSUk
∈ R3 is the position of SUk in relation to the robot

base frame O (which can be computed via kinematics with the calibrated DH parameters), and

ORSUk
∈ R3×3 is the rotational matrix of SUk in relation to the robot base frame. This enables

the computation of any object position in Cartesian space for each calibrated SUk. Combined with

knowledge of the robot’s state, expressive collision avoidance behavior and contact thresholding are

now achievable. This concludes the object detection block of Fig. 6.1.

6.3 Motion Control with Quadratic Programming

The main task, as well as the avoidance behaviors of the system, are implemented through

a Cartesian velocity controller, which solves for the control joint velocities in a unified quadratic

programming (QP) expression. The QP optimization technique is selected due to its ability to

incorporate a variety of behavior movement modifications into the optimization problem.

To define the tasks, first, let q̇ ∈ Rn represent the joint velocities of a kinematically redun-
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dant robot manipulator with n joints, and let the Cartesian velocity of the end-effector (EE) be

represented as ẋ ∈ Rm, where ẋ = J(q)q̇, and J(q) ∈ Rm×n is the Jacobian of the robot. Now, the

QP control equation is written as:

g(q̇) =
1

2
(ẋd − Jq̇)>(ẋd − Jq̇)+

µ

2
q̇>q̇

+
k

2
(q̇mid − q̇)>(q̇mid − q̇).

(6.2)

The first term in Eq. (6.2) represents the quadratic Cartesian error between the current end-

effector velocity ẋ and the desired task Cartesian velocity ẋd, whereas the second term is used as a

damping term to avoid singularities based on a robot manipulability measure: we refer the reader

to [44] for more details.

Furthermore, a third term is added on to the main task which causes the robot to favor joint

positions near the middle of its joint limits, which allows a robot to move to a more natural and

safer joint configuration, far away from the mechanical limits. In this term, q̇mid consists of the

desired joint velocities that will move each joint closer to its middle position (as determined from the

joint operational range from the robot’s manufacturer), and k is a scaling factor used to weigh the

middle joint term in the whole objective function. Eq. (6.2) is then manipulated to conform with the

quadratic programming notation and restrictions as noted in [27]. The previous formulation, which

did not include the middle joint limit term, allows a manipulator to enter undesired configurations

over time, and ultimately error states that prevent further robot operation.

Next, in the following two sections, the end-effector velocity reduction and robot movement

restrictions are detailed, which form the constraints of the QP formulation.

6.4 End-Effector Velocity Reduction

When a robot detects an obstacle or human, its end-effector velocity is reduced in order

to maximize safety and prepare for contact, independent of avoidance behaviors. As a human

collaborator approaches, the robot should slow down execution of its main task, which actually

causes the corresponding avoidance motion to be slower; still allowing for contact to easily be
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made. It is worth noting that this behavior doesn’t constitute avoidance behavior, it simply slows

down the robot to encourage contact. Without any velocity reduction behavior, purposeful contact

is both difficult and unnatural.

The velocity is reduced as follows: for each detected object h within a selected range (from

a sensor unit) dmax (in this work, dmax is 0.8m), the norm of the distance is taken ||d||, between

the object and end-effector. The lowest norm is selected to ensure safest behavior. From here, the

manipulator’s desired velocity is reduced based on the following equation:

ẋd =
||d||
dmax

ẋd, (6.3)

where dmax scales ||d|| to produce a normalization term that reduces the main task’s desired EE

velocity, dependent on how close an object is. Note that objects detected beyond dmax from the

EE are discarded because we desire close-proximity behavior. In addition, to prevent jerky motions

induced by vanishing obstacle readings (e.g., a proximity sensor reading goes from 0.8m to 5m

instantly in between consecutive timesteps), we apply a linear decay formula to simulate a slowly

moving away obstacle:

ẋd = ẋd ·
[
||d||
dmax

+ (1− ||d||
dmax

) · lobs
lmax

]
, (6.4)

where lobs, which starts at 0, is the lifespan of a current obstacle after sensing, that linearly increases

over time, and lmax is the value of where the original end-effector velocity is completely restored.

The value is set to 200 in this work’s evaluation.

6.5 Robot Movement Restrictions

The choice to use the QP framework allows for the construction of expressive avoidance

behaviors via creating movement restrictions. To further make it easier to make contact, using the

QP framework also makes it possible to move around objects instead of directly moving away.

To obtain such behavior, movement restrictions are placed on the part of the robot closest

to each obstacle to permit movement around obstacles. To achieve this, at a high level, a linear
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inequality constraint is constructed that limits the motion ẋc,i ∈ R3, which is the Cartesian velocity

of the closest point to obstacle i on the manipulator. This value is computed as ẋc,i = Jc,iq̇, where

Jc,i is the Jacobian of the closest point on the manipulator to the obstacle. Then, d̂ is computed,

which describes the direction to the obstacle hi ∈ R3; thus, the term d̂TJc,iq̇ describes the approach

velocity of the robot towards an object. Last, this value is constrained, for any number of obstacles,

to a desired approach velocity value, ẋa, which is parameterized based on the distance to an obstacle.

ẋa, or the desired approach velocity to an obstacle, is computed as a smooth and continuous

function. Drawing inspiration from [2], our movement restrictions on the approach velocity are

computed as follows:

Va =
Vmax

1 + e
α(2 d

dcrit
−1)

; (6.5)

Vb =
Vmax

1 + e
α(2

d−dcrit
dnotice−dcrit

−1)
; (6.6)

ẋa =



Va − Vmax : if d < dnotice and d < drepulse,

Vb : if d < dnotice and d ≥ drepulse,

Drop Restriction : otherwise.

(6.7)

Where Vmax is the maximum repulsive velocity, d is the distance from the object to the closest

point on the robot’s body, drepulse is the distance where repulsive behavior begins, and dnotice is

the distance at which we “notice” an obstacle, and start to impose movement restrictions. This

behavior ensures smooth approach velocities as well as transitions between repulsive and movement

limiting. When an object is close, only a small repulsion will be applied—the robot will only very

slowly try to move around the object. In this manner, our framework does not lose the ability for

avoidance, but it avoids slowly as to encourage desirable contact behavior. For our experimental

scenarios, Vmax = 0.04, drepulse = 0.1, and dnotice = 0.6.
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6.6 Dynamic Contact Thresholding

To smoothly transition between prior-to-contact and post-contact behaviors, a robot con-

troller must determine if external contact has been made, along with the direction and magnitude

of the contact. Successful achievement of such behavior brings with it three desired qualities: a)

perfect or near-perfect external force data should not be required, b) contact is more likely when

an object is close to the robot, and c) a robot moving close to an object should move slower than

normal and have increased sensitivity to interaction. To this end, we propose a dynamic thresh-

olding algorithm that relies on obstacle readings and an estimation of the robot’s force; together,

both are fused in such a fashion that will capture all three desired qualities.

To detect contact forces, the proposed algorithm does not require a perfect estimation of the

force: the signal that we utilize throughout this paper is the estimated external Cartesian contact

force, provided through the Franka Control Interface [45]. This estimation is often volatile and can

be quite far from zero in all axes, especially when the robot is moving at high velocities. However,

our algorithm is robust to noisy and biased data, and can be used to accurately determine if external

contact is made on the robot’s end-effector.

6.6.1 Average External Force Calculation

In order to work with only recent force data, a sliding window is created to determined the

running average.

The manner in which we add new values to the sliding window is detailed below:

xt =


αxt + (1− α)xt−1 : if |xt − µt−1| > λσt−1,

xt : otherwise,

(6.8)

where xt is the data point appended to the window, α is the influence value of a detected outlier

(exponential moving average), λ is a scaling factor which is multiplied by the previous standard

deviation σt−1, and µt−1 is the previous mean value. The term λσt−1 determines if a given value is

an outlier and should be discounted when added to the signal history. This allows for data points
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that are outliers to have less influence on the data. Additionally, a window size is selected that

only includes a small number of samples because a larger window size would make it challenging

for actual contact to be detected. In our experimental scenarios, α = 0.1 and λ = 0.75.

6.6.2 Contact Threshold Calculation

Contact thresholding determines when contact is made, in what directions (x, y, z) contact

was made, and the magnitude of the contact. To start, from the constructed external force window,

the running average (µ) is used as a base value for the dynamic external contact thresholds, which

are expressed as

Contact Threshold =


Tu = µ+ Fb + Fσ − F−obs,

Tl = µ− Fb − Fσ + F+obs,

(6.9)

where Tu is the upper and Tl is the lower limit of the contact threshold, Fb is the base additional

force required from the mean to trigger contact behavior (negative and positive), and Fσ increases

the external force required to trigger contact behavior, and is based on the standard deviation of

the external force signal. This value is computed as

Fσ = min(
σ

σmax
· Fstd, Fstd), (6.10)

where σmax is the max (user-defined) standard deviation. σ is the force data’s current standard

deviation (with the modified sliding window), and Fstd is the max amount of force (user-defined)

that is applied based on the σ value. From the above formulation, when the standard deviation of

the current data is low, Fσ will be small, which leads to a threshold that is sensitive to an external

force. Indeed, as the robot slows down, the external force data is less noisy, making a slower robot

more sensitive to movement. Even when the manipulator has not detected an object, if it is moving

with a reduced velocity, it is more sensitive to forces.

Next, F−obs and F+obs are force reductions of the upper and lower limits, respectively, based

on the distance from an obstacle to the robot’s EE. A closer object should make the thresholds

more constrictive because contact is more likely.
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Thus, F−obs and F+obs are calculated using the following equation:

Fobs = (
dmax − d

dmax − dmin
) · Fd, (6.11)

where dmax is the distance from the robot’s end-effector where Fobs begins to be applied to the

contact threshold, and dmin is the distance at which the maximum force reduction is applied. Fd

is the maximum force reduction (user-defined), and d is the minimum distance from the robot EE

on the positive side of the robot for F+obs and the negative for F−obs, relative to each axis (x, y,

z). For example, an object with a greater y value than the current end-effector position will lead

to a reduction in the required force to trigger contact behavior in the negative y direction.

When contact behavior is triggered, the external force data reading (from the sliding window)

must exceed either the upper or lower threshold in any one or more of the x, y, z axes. If this

condition is met, then the robot will move away accordingly. We calculate the direction and overall

force applied to the end-effector as to apply a velocity in the force’s direction, as shown below.

Fext = Freading − µ, ẋdes = C · Fext. (6.12)

Freading ∈ R3 describes the contact force from the sliding window, and µ ∈ R3 is the mean force of

the window, which allows for the computation of Fext ∈ R3. C describes the Cartesian compliance

matrix that proportionally multiplies each component of the external force to output a desired

end-effector velocity, and this desired end-effector velocity temporarily overrides the main task.

The velocity is then linearly decayed to zero over a specified time period, similar to Eq. (6.4).

For the experimental scenarios, the user-defined contact thresholding values were set to Fstd = 3,

Fd = 4, Fσ = 4, and Fb = 10.

Ultimately, as a result of dynamic contact thresholding, the three aforementioned interaction

qualities are achieved:

(1) Robustness to measurement noise: The method does not rely on perfect external force

data; instead, it only requires data that is reasonably noticeable beyond the current mean,
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similar to anomaly detection.

(2) Anticipated contact from obstacles: As an obstacle approaches the robot end-effector,

the contact thresholds decrease due to the Fobs value.

(3) Increased contact sensitivity as velocity decreases: For noisier data, we are less

certain of contact being made, which increases the threshold bounds. When a robot slows

down due to obstacles, reduced noise is observed, and, in turn, a smaller Fσ value is added

to the thresholds.

One possible concern that may arise with this dynamic contact thresholding method is to use

one static threshold; however, unlike static thresholds, the proposed method works on imperfect,

noisy estimations, and has the ability to adapt to environmental information, making it clearly

more versatile for researchers and robot operators.



Chapter 7

Implicit Contact Anticipation for Physical Human Robot Interaction:

Experiment Design and Results

To validate the effectivness of the proposed framework, multiple experiments are conducted

on the 7-DoF, real world Franka Panda robot. A computer outfitted with a real time kernel sends

joint velocity commands to the robot’s control box at a rate of 100Hz. We utilize the calibration

algorithm detailed earlier in this thesis and the same SUs as the previous sections for fast object

detection. As previously mentioned, the SU contains both an IMU and a proximity sensor, the latter

of which informs our avoidance and contact detection algorithms. The experimental pipeline is first

developed using C++ and ROS [22]: the avoidance component of our framework was implemented

in Gazebo [23] before moving on to the real robot to test out the entire framework. Finally, the

framework’s multiple capabilities are showcased in multiple scenarios, as detailed below.

7.1 Experimental Scenarios

7.1.1 Static Obstacle Collision

The first experimental scenario consists of a static obstacle collision: the robot is placed near

a large, static object and is commanded to move towards the object to cause a collision to occur.

The object is placed close enough to the robot so that a collision will occur, as our framework’s

avoidance behavior is not completely geared towards avoidance. The purpose of this scenario is to

highlight the integration of onboard proximity information to slow down and enable soft contact.

To achieve this, we position the object in two positions next to the robot to highlight our system’s
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Figure 7.1: Robot end-effector, moving in a circular path (blue circle); when an object is detected
(green dots), the end-effector trajectory is modified to avoid collision (red) then gradually recovers
(green). We demonstrate this behavior in two interactions on opposite sides of the robot; the
objects are noticed by independent proximity sensors.

abilitiy to reduce contact thresholds based on an object’s location. In the first position, the static

object is placed in the negative y direction with respect to the end-effector; in the second position,

it is placed in the positive y direction with respect to the end-effector. We further vary these two

scenarios by employing two separate trajectories for each collision: in the first position, the robot

moves in a Cartesian circle with a radius of 0.25m, centered at (0.5, 0, 0.25), and moving counter-

clockwise only in the y and z directions. For the second position, the robot moves in a line from

(0.4, 0.5, 0.5) to (0.4, −0.5, 0.5), with speeds up to 0.3 m/s. The results of our method in these
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scenarios are compared to that of the same movement when not informed by onboard sensor units

to reduce the movement speed and anticipate soft contact.

7.1.2 Obstacle Avoidance

In the obstacle avoidance scenario, the robot’s avoidance capabilities are demonstrated by

commanding the robot to move in the same circular trajectory as the previous section, then having

a human enter the robot’s current path. When this happens, a slight deviation is caused in the

robot’s circular trajectory; however, the robot soon is able to correct it after the human leaves the

robot’s nearby space. This demonstration is best shown in Fig. 6.2a, in which a human holds their

hand up near the robot. The deviation from the desired trajectory is shown, with two separate

proximity sensors being activated on opposite sides of the robot.

7.1.3 Dynamic Obstacle Collision

In the last experimental scenario, multiple points of contact with a human participant are

shown in a continuous interaction. Unlike Section 7.1.1, the person represents a dynamic obstacle.

Multiple, different sensors are activated in this interaction, and contact is made from different

directions to showcase our framework’s capabilities. A visual depiction of this interaction is shown

in Fig. 6.2, where each key component of the interaction (prior to contact, contact, and post contact

behavior) are pictured.

7.2 Results and Discussion

7.2.1 Static Obstacle Collision

In the static contact scenario, Fig. 7.2 depicts the force reduction caused when proximity

data can be used to anticipate collisions. In both of the static collision examples, the difference in

the overall detected contact force is approximately two times smaller when using proximity data;

the reduced force clearly demonstrates that proximity detection is beneficial for safe pHRI.
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Figure 7.2: Force difference for contact detection, in the y-direction, between our method with
proximity sensing (red line) and without proximity sensing (blue line). The shaded regions represent
the thresholds for contact. In the top graph, the robot is moving in a circular trajectory, and in
the bottom, a horizontal line, before contact is made.
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Figure 7.3: Three components of a continuous human–robot interaction over 30 seconds, during
this time, three distinct contact are made from multiple directions. Top graph: depth values of
seven proximity sensors placed along the robot body and EE, with the activation threshold as a
dotted black line. Middle graph: external force exerted on the robot EE in the y-axis with the
dynamic thresholds shown above and below. Bottom graph: The manipulator’s EE velocity along
the y-axis.
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Before contact is made, the contact threshold value is reduced, which can be clearly seen in

the concave red shaded region of the bottom graph. The change in threshold can be attributed to

the object proximity and robot velocity scaling, which reduces the resultant collision force. The

two independent contacts in different directions of the y-axis demonstrate that the system works

in both directions. Furthermore, it is worth mentioning that while we setup a situation in which

collision cannot be prevented, our framework is designed in such a way that allows the altering of

avoidance weights to completely avoid the object. Indeed, different use cases can have different

settings of avoidance parameters.

7.2.2 Obstacle Avoidance

Fig. 7.1 displays the trajectory of the robot’s EE altered due to the avoidance behavior

while executing a circular path. As an object is detected by one of the robot’s SU’s (green dots),

the controller decreases the robot’s velocity, and the minor avoidance behavior leads to a slight

deviation in the circular path. Once the object is sufficiently far away from the robot, or moving

in the opposite direction (due to the trajectory), the robot soon returns to its original trajectory.

This behavior is demonstrated through multiple sensor units mounted on opposite sides of the

manipulator to solidfy the controller’s ability to both avoid collisions and prepare for contact. As

with the previous section, parameters can be tuned to make our framework have more or less

restrictive avoidance behaviors.

7.2.3 Dynamic Obstacle Collision

The final experimental scenario highlights multiple, dynamic contacts with a human, which

is outlined in Fig. 6.2. These interactions are graphed in Fig. 7.3. In this figure, three separate

contacts are made with the robot. The manipulator only reacts to obstacles with a distance of

at most 0.5m away, as seen as a black dotted line in Fig. 7.3. Note that the threshold value of

0.5m can be altered based on different use cases. When an object is “noticed” by the robot; that

is, the distance to the nearest SU is at most 0.5m, the robot begins to reduce its velocity, which
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Figure 7.4: Top graph: distance values from six proximity sensors mounted on the robot body and
EE during interaction. The region of interest label denotes the region at which sensed distances
are meaningful for our algorithm. Bottom graph: external force exerted on the robot EE in the y
direction and associated contact thresholds above and below.



45

can be seen in the blue shaded region of the bottom graph in Fig. 7.3. Along with the slowing

down behaviors, the contact thresholds become more constrictive as objects come close, which can

be prominently seen in Fig. 7.4, which displays a higher resolution view of the third interaction.

During this interaction, two proximity sensors are activated on opposite sides of the robot, leading

to a reduction of both the upper and lower thresholds, demonstrated in the red shaded regions of

Fig. 7.4. After the robot slows down, the actual contact is expressed in the red shaded regions of

Fig. 7.3 from multiple directions. The applied force’s magnitude and direction directly determines

the resulting direction and magnitude of the EE repulsive velocity when such repulsive behavior is

triggered. The resulting velocity spikes from contact in the bottom graph of Fig. 7.3 are also shown

in the red shaded regions. Altogether, through this comprehensive interaction, we illustrate that

the proposed framework is able to both anticipate and react to contact with dynamic objects in its

nearby space, from multiple. In fact, without our novel thresholding behavior, such soft contact

would not trigger the reactive movement and not allow a human to easily interact with the robot.

The last interaction is only noticed through our thresholding. This might bring up the question

of whether the threshold could simply be made static and smaller; however, in Fig. 7.4, before the

actual contact is made, the force readings are around 5 to 8N, revealing how the force data is far

from zero before contact, but our method is still able to accurately pinpoint the one point of contact.

The implicit anticipation opens a new realm of behaviors for true human–robot collaboration in

close proximity, where a robot can dynamically adapt to its changing environment.



Chapter 8

Conclusion and Future Work

In these thesis, we presented two contributions: the first, which presented a system for a

plug-and-play robotic skin, we a) introduced a cheap novel skin unit for nearby space perception;

b) an accurate method for kinematically calibrating multiple SUs along any part of a collaborative

manipulator; c) the demonstrated effectiveness of the calibration through a real-life avoidance

example. Our approach works for any number of SUs and does not need any external systems.

With only a few centimeters of error in the real world, we are able to effectively leverage calibrated

SU poses for meaningful interaction.

The second contribution introduced a framework for contact anticipation during physical

human–robot interaction. Through relaxed avoidance constraints, combined with a novel dynamic

thresholding algorithm, our work addresses the unexplored gray area between avoidance and con-

tact. Furthermore, our experiments demonstrate the system’s robustness in multiple scenarios with

both static and dynamic interactions.

Accordingly, we have open-sourced our code and data for the research community (at the

moment, to be available upon inquiry or during the IROS 2021 camera-ready stage), and we are

hopeful that this work will continue to push forward plug-and-play distributed, artificial sensing

for robotics, and its applications for close-proximity interaction.

With respect to the first contribution, there are a few promising avenues for future work:

i) investigate how significant the skin calibration accuracy is for safe robot control by comparing

with the sensitivity of a human skin; ii) further improving the skin calibration accuracy by looking
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deeper into the effectiveness of the dynamic and static poses; iii) improve on our novel skin.

With respect to the second contribution’s future work: i) developing a truly collaborative

system through both hardware and software – our current sensor units are outfitted with IMUs;

while we used the IMUs for our calibration, they were not utilized in this framework. IMU data

can be leveraged to further increase sensitivity to external forces acting on the robot; ii) iterating

on the next generation of SUs, including tactile sensors, allowing for localization of contact from

external forces; iii) planning to explore the effectiveness of our perception as we add more sensor

units along a robot’s exterior and combine this information with external vision to gain a holistic

view of the robot’s environment.

Ultimately, we will continue to improve our current sensor units and achieve whole–body

awareness, inching robotics research closer and closer to natural and extended human-robot collab-

oration.
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